ZIm/crates/semantic_index/src/semantic_index.rs
Mikayla Maki a6b1514246
Fix missed renames in #22632 (#23688)
Fix a bug where a GPUI macro still used `ModelContext`
Rename `AsyncAppContext` -> `AsyncApp`
Rename update_model, read_model, insert_model, and reserve_model to
update_entity, read_entity, insert_entity, and reserve_entity

Release Notes:

- N/A
2025-01-26 23:37:34 +00:00

632 lines
21 KiB
Rust

mod chunking;
mod embedding;
mod embedding_index;
mod indexing;
mod project_index;
mod project_index_debug_view;
mod summary_backlog;
mod summary_index;
mod worktree_index;
use anyhow::{Context as _, Result};
use collections::HashMap;
use fs::Fs;
use gpui::{App, AppContext as _, AsyncApp, BorrowAppContext, Context, Entity, Global, WeakEntity};
use language::LineEnding;
use project::{Project, Worktree};
use std::{
cmp::Ordering,
path::{Path, PathBuf},
sync::Arc,
};
use util::ResultExt as _;
use workspace::Workspace;
pub use embedding::*;
pub use project_index::{LoadedSearchResult, ProjectIndex, SearchResult, Status};
pub use project_index_debug_view::ProjectIndexDebugView;
pub use summary_index::FileSummary;
pub struct SemanticDb {
embedding_provider: Arc<dyn EmbeddingProvider>,
db_connection: Option<heed::Env>,
project_indices: HashMap<WeakEntity<Project>, Entity<ProjectIndex>>,
}
impl Global for SemanticDb {}
impl SemanticDb {
pub async fn new(
db_path: PathBuf,
embedding_provider: Arc<dyn EmbeddingProvider>,
cx: &mut AsyncApp,
) -> Result<Self> {
let db_connection = cx
.background_executor()
.spawn(async move {
std::fs::create_dir_all(&db_path)?;
unsafe {
heed::EnvOpenOptions::new()
.map_size(1024 * 1024 * 1024)
.max_dbs(3000)
.open(db_path)
}
})
.await
.context("opening database connection")?;
cx.update(|cx| {
cx.observe_new(
|workspace: &mut Workspace, _window, cx: &mut Context<Workspace>| {
let project = workspace.project().clone();
if cx.has_global::<SemanticDb>() {
cx.update_global::<SemanticDb, _>(|this, cx| {
this.create_project_index(project, cx);
})
} else {
log::info!("No SemanticDb, skipping project index")
}
},
)
.detach();
})
.ok();
Ok(SemanticDb {
db_connection: Some(db_connection),
embedding_provider,
project_indices: HashMap::default(),
})
}
pub async fn load_results(
mut results: Vec<SearchResult>,
fs: &Arc<dyn Fs>,
cx: &AsyncApp,
) -> Result<Vec<LoadedSearchResult>> {
let mut max_scores_by_path = HashMap::<_, (f32, usize)>::default();
for result in &results {
let (score, query_index) = max_scores_by_path
.entry((result.worktree.clone(), result.path.clone()))
.or_default();
if result.score > *score {
*score = result.score;
*query_index = result.query_index;
}
}
results.sort_by(|a, b| {
let max_score_a = max_scores_by_path[&(a.worktree.clone(), a.path.clone())].0;
let max_score_b = max_scores_by_path[&(b.worktree.clone(), b.path.clone())].0;
max_score_b
.partial_cmp(&max_score_a)
.unwrap_or(Ordering::Equal)
.then_with(|| a.worktree.entity_id().cmp(&b.worktree.entity_id()))
.then_with(|| a.path.cmp(&b.path))
.then_with(|| a.range.start.cmp(&b.range.start))
});
let mut last_loaded_file: Option<(Entity<Worktree>, Arc<Path>, PathBuf, String)> = None;
let mut loaded_results = Vec::<LoadedSearchResult>::new();
for result in results {
let full_path;
let file_content;
if let Some(last_loaded_file) =
last_loaded_file
.as_ref()
.filter(|(last_worktree, last_path, _, _)| {
last_worktree == &result.worktree && last_path == &result.path
})
{
full_path = last_loaded_file.2.clone();
file_content = &last_loaded_file.3;
} else {
let output = result.worktree.read_with(cx, |worktree, _cx| {
let entry_abs_path = worktree.abs_path().join(&result.path);
let mut entry_full_path = PathBuf::from(worktree.root_name());
entry_full_path.push(&result.path);
let file_content = async {
let entry_abs_path = entry_abs_path;
fs.load(&entry_abs_path).await
};
(entry_full_path, file_content)
})?;
full_path = output.0;
let Some(content) = output.1.await.log_err() else {
continue;
};
last_loaded_file = Some((
result.worktree.clone(),
result.path.clone(),
full_path.clone(),
content,
));
file_content = &last_loaded_file.as_ref().unwrap().3;
};
let query_index = max_scores_by_path[&(result.worktree.clone(), result.path.clone())].1;
let mut range_start = result.range.start.min(file_content.len());
let mut range_end = result.range.end.min(file_content.len());
while !file_content.is_char_boundary(range_start) {
range_start += 1;
}
while !file_content.is_char_boundary(range_end) {
range_end += 1;
}
let start_row = file_content[0..range_start].matches('\n').count() as u32;
let mut end_row = file_content[0..range_end].matches('\n').count() as u32;
let start_line_byte_offset = file_content[0..range_start]
.rfind('\n')
.map(|pos| pos + 1)
.unwrap_or_default();
let mut end_line_byte_offset = range_end;
if file_content[..end_line_byte_offset].ends_with('\n') {
end_row -= 1;
} else {
end_line_byte_offset = file_content[range_end..]
.find('\n')
.map(|pos| range_end + pos + 1)
.unwrap_or_else(|| file_content.len());
}
let mut excerpt_content =
file_content[start_line_byte_offset..end_line_byte_offset].to_string();
LineEnding::normalize(&mut excerpt_content);
if let Some(prev_result) = loaded_results.last_mut() {
if prev_result.full_path == full_path {
if *prev_result.row_range.end() + 1 == start_row {
prev_result.row_range = *prev_result.row_range.start()..=end_row;
prev_result.excerpt_content.push_str(&excerpt_content);
continue;
}
}
}
loaded_results.push(LoadedSearchResult {
path: result.path,
full_path,
excerpt_content,
row_range: start_row..=end_row,
query_index,
});
}
for result in &mut loaded_results {
while result.excerpt_content.ends_with("\n\n") {
result.excerpt_content.pop();
result.row_range =
*result.row_range.start()..=result.row_range.end().saturating_sub(1)
}
}
Ok(loaded_results)
}
pub fn project_index(
&mut self,
project: Entity<Project>,
_cx: &mut App,
) -> Option<Entity<ProjectIndex>> {
self.project_indices.get(&project.downgrade()).cloned()
}
pub fn remaining_summaries(
&self,
project: &WeakEntity<Project>,
cx: &mut App,
) -> Option<usize> {
self.project_indices.get(project).map(|project_index| {
project_index.update(cx, |project_index, cx| {
project_index.remaining_summaries(cx)
})
})
}
pub fn create_project_index(
&mut self,
project: Entity<Project>,
cx: &mut App,
) -> Entity<ProjectIndex> {
let project_index = cx.new(|cx| {
ProjectIndex::new(
project.clone(),
self.db_connection.clone().unwrap(),
self.embedding_provider.clone(),
cx,
)
});
let project_weak = project.downgrade();
self.project_indices
.insert(project_weak.clone(), project_index.clone());
cx.observe_release(&project, move |_, cx| {
if cx.has_global::<SemanticDb>() {
cx.update_global::<SemanticDb, _>(|this, _| {
this.project_indices.remove(&project_weak);
})
}
})
.detach();
project_index
}
}
impl Drop for SemanticDb {
fn drop(&mut self) {
self.db_connection.take().unwrap().prepare_for_closing();
}
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::anyhow;
use chunking::Chunk;
use embedding_index::{ChunkedFile, EmbeddingIndex};
use feature_flags::FeatureFlagAppExt;
use fs::FakeFs;
use futures::{future::BoxFuture, FutureExt};
use gpui::TestAppContext;
use indexing::IndexingEntrySet;
use language::language_settings::AllLanguageSettings;
use project::{Project, ProjectEntryId};
use serde_json::json;
use settings::SettingsStore;
use smol::channel;
use std::{future, path::Path, sync::Arc};
fn init_test(cx: &mut TestAppContext) {
env_logger::try_init().ok();
cx.update(|cx| {
let store = SettingsStore::test(cx);
cx.set_global(store);
language::init(cx);
cx.update_flags(false, vec![]);
Project::init_settings(cx);
SettingsStore::update(cx, |store, cx| {
store.update_user_settings::<AllLanguageSettings>(cx, |_| {});
});
});
}
pub struct TestEmbeddingProvider {
batch_size: usize,
compute_embedding: Box<dyn Fn(&str) -> Result<Embedding> + Send + Sync>,
}
impl TestEmbeddingProvider {
pub fn new(
batch_size: usize,
compute_embedding: impl 'static + Fn(&str) -> Result<Embedding> + Send + Sync,
) -> Self {
Self {
batch_size,
compute_embedding: Box::new(compute_embedding),
}
}
}
impl EmbeddingProvider for TestEmbeddingProvider {
fn embed<'a>(
&'a self,
texts: &'a [TextToEmbed<'a>],
) -> BoxFuture<'a, Result<Vec<Embedding>>> {
let embeddings = texts
.iter()
.map(|to_embed| (self.compute_embedding)(to_embed.text))
.collect();
future::ready(embeddings).boxed()
}
fn batch_size(&self) -> usize {
self.batch_size
}
}
#[gpui::test]
async fn test_search(cx: &mut TestAppContext) {
cx.executor().allow_parking();
init_test(cx);
cx.update(|cx| {
// This functionality is staff-flagged.
cx.update_flags(true, vec![]);
});
let temp_dir = tempfile::tempdir().unwrap();
let mut semantic_index = SemanticDb::new(
temp_dir.path().into(),
Arc::new(TestEmbeddingProvider::new(16, |text| {
let mut embedding = vec![0f32; 2];
// if the text contains garbage, give it a 1 in the first dimension
if text.contains("garbage in") {
embedding[0] = 0.9;
} else {
embedding[0] = -0.9;
}
if text.contains("garbage out") {
embedding[1] = 0.9;
} else {
embedding[1] = -0.9;
}
Ok(Embedding::new(embedding))
})),
&mut cx.to_async(),
)
.await
.unwrap();
let fs = FakeFs::new(cx.executor());
let project_path = Path::new("/fake_project");
fs.insert_tree(
project_path,
json!({
"fixture": {
"main.rs": include_str!("../fixture/main.rs"),
"needle.md": include_str!("../fixture/needle.md"),
}
}),
)
.await;
let project = Project::test(fs, [project_path], cx).await;
let project_index = cx.update(|cx| {
let language_registry = project.read(cx).languages().clone();
let node_runtime = project.read(cx).node_runtime().unwrap().clone();
languages::init(language_registry, node_runtime, cx);
semantic_index.create_project_index(project.clone(), cx)
});
cx.run_until_parked();
while cx
.update(|cx| semantic_index.remaining_summaries(&project.downgrade(), cx))
.unwrap()
> 0
{
cx.run_until_parked();
}
let results = cx
.update(|cx| {
let project_index = project_index.read(cx);
let query = "garbage in, garbage out";
project_index.search(vec![query.into()], 4, cx)
})
.await
.unwrap();
assert!(
results.len() > 1,
"should have found some results, but only found {:?}",
results
);
for result in &results {
println!("result: {:?}", result.path);
println!("score: {:?}", result.score);
}
// Find result that is greater than 0.5
let search_result = results.iter().find(|result| result.score > 0.9).unwrap();
assert_eq!(search_result.path.to_string_lossy(), "fixture/needle.md");
let content = cx
.update(|cx| {
let worktree = search_result.worktree.read(cx);
let entry_abs_path = worktree.abs_path().join(&search_result.path);
let fs = project.read(cx).fs().clone();
cx.background_executor()
.spawn(async move { fs.load(&entry_abs_path).await.unwrap() })
})
.await;
let range = search_result.range.clone();
let content = content[range.clone()].to_owned();
assert!(content.contains("garbage in, garbage out"));
}
#[gpui::test]
async fn test_embed_files(cx: &mut TestAppContext) {
cx.executor().allow_parking();
let provider = Arc::new(TestEmbeddingProvider::new(3, |text| {
if text.contains('g') {
Err(anyhow!("cannot embed text containing a 'g' character"))
} else {
Ok(Embedding::new(
('a'..='z')
.map(|char| text.chars().filter(|c| *c == char).count() as f32)
.collect(),
))
}
}));
let (indexing_progress_tx, _) = channel::unbounded();
let indexing_entries = Arc::new(IndexingEntrySet::new(indexing_progress_tx));
let (chunked_files_tx, chunked_files_rx) = channel::unbounded::<ChunkedFile>();
chunked_files_tx
.send_blocking(ChunkedFile {
path: Path::new("test1.md").into(),
mtime: None,
handle: indexing_entries.insert(ProjectEntryId::from_proto(0)),
text: "abcdefghijklmnop".to_string(),
chunks: [0..4, 4..8, 8..12, 12..16]
.into_iter()
.map(|range| Chunk {
range,
digest: Default::default(),
})
.collect(),
})
.unwrap();
chunked_files_tx
.send_blocking(ChunkedFile {
path: Path::new("test2.md").into(),
mtime: None,
handle: indexing_entries.insert(ProjectEntryId::from_proto(1)),
text: "qrstuvwxyz".to_string(),
chunks: [0..4, 4..8, 8..10]
.into_iter()
.map(|range| Chunk {
range,
digest: Default::default(),
})
.collect(),
})
.unwrap();
chunked_files_tx.close();
let embed_files_task =
cx.update(|cx| EmbeddingIndex::embed_files(provider.clone(), chunked_files_rx, cx));
embed_files_task.task.await.unwrap();
let embedded_files_rx = embed_files_task.files;
let mut embedded_files = Vec::new();
while let Ok((embedded_file, _)) = embedded_files_rx.recv().await {
embedded_files.push(embedded_file);
}
assert_eq!(embedded_files.len(), 1);
assert_eq!(embedded_files[0].path.as_ref(), Path::new("test2.md"));
assert_eq!(
embedded_files[0]
.chunks
.iter()
.map(|embedded_chunk| { embedded_chunk.embedding.clone() })
.collect::<Vec<Embedding>>(),
vec![
(provider.compute_embedding)("qrst").unwrap(),
(provider.compute_embedding)("uvwx").unwrap(),
(provider.compute_embedding)("yz").unwrap(),
],
);
}
#[gpui::test]
async fn test_load_search_results(cx: &mut TestAppContext) {
init_test(cx);
let fs = FakeFs::new(cx.executor());
let project_path = Path::new("/fake_project");
let file1_content = "one\ntwo\nthree\nfour\nfive\n";
let file2_content = "aaa\nbbb\nccc\nddd\neee\n";
fs.insert_tree(
project_path,
json!({
"file1.txt": file1_content,
"file2.txt": file2_content,
}),
)
.await;
let fs = fs as Arc<dyn Fs>;
let project = Project::test(fs.clone(), [project_path], cx).await;
let worktree = project.read_with(cx, |project, cx| project.worktrees(cx).next().unwrap());
// chunk that is already newline-aligned
let search_results = vec![SearchResult {
worktree: worktree.clone(),
path: Path::new("file1.txt").into(),
range: 0..file1_content.find("four").unwrap(),
score: 0.5,
query_index: 0,
}];
assert_eq!(
SemanticDb::load_results(search_results, &fs, &cx.to_async())
.await
.unwrap(),
&[LoadedSearchResult {
path: Path::new("file1.txt").into(),
full_path: "fake_project/file1.txt".into(),
excerpt_content: "one\ntwo\nthree\n".into(),
row_range: 0..=2,
query_index: 0,
}]
);
// chunk that is *not* newline-aligned
let search_results = vec![SearchResult {
worktree: worktree.clone(),
path: Path::new("file1.txt").into(),
range: file1_content.find("two").unwrap() + 1..file1_content.find("four").unwrap() + 2,
score: 0.5,
query_index: 0,
}];
assert_eq!(
SemanticDb::load_results(search_results, &fs, &cx.to_async())
.await
.unwrap(),
&[LoadedSearchResult {
path: Path::new("file1.txt").into(),
full_path: "fake_project/file1.txt".into(),
excerpt_content: "two\nthree\nfour\n".into(),
row_range: 1..=3,
query_index: 0,
}]
);
// chunks that are adjacent
let search_results = vec![
SearchResult {
worktree: worktree.clone(),
path: Path::new("file1.txt").into(),
range: file1_content.find("two").unwrap()..file1_content.len(),
score: 0.6,
query_index: 0,
},
SearchResult {
worktree: worktree.clone(),
path: Path::new("file1.txt").into(),
range: 0..file1_content.find("two").unwrap(),
score: 0.5,
query_index: 1,
},
SearchResult {
worktree: worktree.clone(),
path: Path::new("file2.txt").into(),
range: 0..file2_content.len(),
score: 0.8,
query_index: 1,
},
];
assert_eq!(
SemanticDb::load_results(search_results, &fs, &cx.to_async())
.await
.unwrap(),
&[
LoadedSearchResult {
path: Path::new("file2.txt").into(),
full_path: "fake_project/file2.txt".into(),
excerpt_content: file2_content.into(),
row_range: 0..=4,
query_index: 1,
},
LoadedSearchResult {
path: Path::new("file1.txt").into(),
full_path: "fake_project/file1.txt".into(),
excerpt_content: file1_content.into(),
row_range: 0..=4,
query_index: 0,
}
]
);
}
}