ZIm/crates/gpui/src/bounds_tree.rs
2025-05-30 08:23:27 -07:00

337 lines
10 KiB
Rust

use crate::{Bounds, Half};
use std::{
cmp,
fmt::Debug,
ops::{Add, Sub},
};
#[derive(Debug)]
pub(crate) struct BoundsTree<U>
where
U: Clone + Debug + Default + PartialEq,
{
root: Option<usize>,
nodes: Vec<Node<U>>,
stack: Vec<usize>,
}
impl<U> BoundsTree<U>
where
U: Clone
+ Debug
+ PartialEq
+ PartialOrd
+ Add<U, Output = U>
+ Sub<Output = U>
+ Half
+ Default,
{
pub fn clear(&mut self) {
self.root = None;
self.nodes.clear();
self.stack.clear();
}
pub fn insert(&mut self, new_bounds: Bounds<U>) -> u32 {
// If the tree is empty, make the root the new leaf.
if self.root.is_none() {
let new_node = self.push_leaf(new_bounds, 1);
self.root = Some(new_node);
return 1;
}
// Search for the best place to add the new leaf based on heuristics.
let mut max_intersecting_ordering = 0;
let mut index = self.root.unwrap();
while let Node::Internal {
left,
right,
bounds: node_bounds,
..
} = &mut self.nodes[index]
{
let left = *left;
let right = *right;
*node_bounds = node_bounds.union(&new_bounds);
self.stack.push(index);
// Descend to the best-fit child, based on which one would increase
// the surface area the least. This attempts to keep the tree balanced
// in terms of surface area. If there is an intersection with the other child,
// add its keys to the intersections vector.
let left_cost = new_bounds.union(self.nodes[left].bounds()).half_perimeter();
let right_cost = new_bounds
.union(self.nodes[right].bounds())
.half_perimeter();
if left_cost < right_cost {
max_intersecting_ordering =
self.find_max_ordering(right, &new_bounds, max_intersecting_ordering);
index = left;
} else {
max_intersecting_ordering =
self.find_max_ordering(left, &new_bounds, max_intersecting_ordering);
index = right;
}
}
// We've found a leaf ('index' now refers to a leaf node).
// We'll insert a new parent node above the leaf and attach our new leaf to it.
let sibling = index;
// Check for collision with the located leaf node
let Node::Leaf {
bounds: sibling_bounds,
order: sibling_ordering,
..
} = &self.nodes[index]
else {
unreachable!();
};
if sibling_bounds.intersects(&new_bounds) {
max_intersecting_ordering = cmp::max(max_intersecting_ordering, *sibling_ordering);
}
let ordering = max_intersecting_ordering + 1;
let new_node = self.push_leaf(new_bounds, ordering);
let new_parent = self.push_internal(sibling, new_node);
// If there was an old parent, we need to update its children indices.
if let Some(old_parent) = self.stack.last().copied() {
let Node::Internal { left, right, .. } = &mut self.nodes[old_parent] else {
unreachable!();
};
if *left == sibling {
*left = new_parent;
} else {
*right = new_parent;
}
} else {
// If the old parent was the root, the new parent is the new root.
self.root = Some(new_parent);
}
for node_index in self.stack.drain(..).rev() {
let Node::Internal {
max_order: max_ordering,
..
} = &mut self.nodes[node_index]
else {
unreachable!()
};
if *max_ordering >= ordering {
break;
}
*max_ordering = ordering;
}
ordering
}
fn find_max_ordering(&self, index: usize, bounds: &Bounds<U>, mut max_ordering: u32) -> u32 {
match &self.nodes[index] {
Node::Leaf {
bounds: node_bounds,
order: ordering,
..
} => {
if bounds.intersects(node_bounds) {
max_ordering = cmp::max(*ordering, max_ordering);
}
}
Node::Internal {
left,
right,
bounds: node_bounds,
max_order: node_max_ordering,
..
} => {
if bounds.intersects(node_bounds) && max_ordering < *node_max_ordering {
let left_max_ordering = self.nodes[*left].max_ordering();
let right_max_ordering = self.nodes[*right].max_ordering();
if left_max_ordering > right_max_ordering {
max_ordering = self.find_max_ordering(*left, bounds, max_ordering);
max_ordering = self.find_max_ordering(*right, bounds, max_ordering);
} else {
max_ordering = self.find_max_ordering(*right, bounds, max_ordering);
max_ordering = self.find_max_ordering(*left, bounds, max_ordering);
}
}
}
}
max_ordering
}
fn push_leaf(&mut self, bounds: Bounds<U>, order: u32) -> usize {
self.nodes.push(Node::Leaf { bounds, order });
self.nodes.len() - 1
}
fn push_internal(&mut self, left: usize, right: usize) -> usize {
let left_node = &self.nodes[left];
let right_node = &self.nodes[right];
let new_bounds = left_node.bounds().union(right_node.bounds());
let max_ordering = cmp::max(left_node.max_ordering(), right_node.max_ordering());
self.nodes.push(Node::Internal {
bounds: new_bounds,
left,
right,
max_order: max_ordering,
});
self.nodes.len() - 1
}
}
impl<U> Default for BoundsTree<U>
where
U: Clone + Debug + Default + PartialEq,
{
fn default() -> Self {
BoundsTree {
root: None,
nodes: Vec::new(),
stack: Vec::new(),
}
}
}
#[derive(Debug, Clone)]
enum Node<U>
where
U: Clone + Debug + Default + PartialEq,
{
Leaf {
bounds: Bounds<U>,
order: u32,
},
Internal {
left: usize,
right: usize,
bounds: Bounds<U>,
max_order: u32,
},
}
impl<U> Node<U>
where
U: Clone + Debug + Default + PartialEq,
{
fn bounds(&self) -> &Bounds<U> {
match self {
Node::Leaf { bounds, .. } => bounds,
Node::Internal { bounds, .. } => bounds,
}
}
fn max_ordering(&self) -> u32 {
match self {
Node::Leaf {
order: ordering, ..
} => *ordering,
Node::Internal {
max_order: max_ordering,
..
} => *max_ordering,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{Bounds, Point, Size};
use rand::{Rng, SeedableRng};
#[test]
fn test_insert() {
let mut tree = BoundsTree::<f32>::default();
let bounds1 = Bounds {
origin: Point { x: 0.0, y: 0.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
let bounds2 = Bounds {
origin: Point { x: 5.0, y: 5.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
let bounds3 = Bounds {
origin: Point { x: 10.0, y: 10.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
// Insert the bounds into the tree and verify the order is correct
assert_eq!(tree.insert(bounds1), 1);
assert_eq!(tree.insert(bounds2), 2);
assert_eq!(tree.insert(bounds3), 3);
// Insert non-overlapping bounds and verify they can reuse orders
let bounds4 = Bounds {
origin: Point { x: 20.0, y: 20.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
let bounds5 = Bounds {
origin: Point { x: 40.0, y: 40.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
let bounds6 = Bounds {
origin: Point { x: 25.0, y: 25.0 },
size: Size {
width: 10.0,
height: 10.0,
},
};
assert_eq!(tree.insert(bounds4), 1); // bounds4 does not overlap with bounds1, bounds2, or bounds3
assert_eq!(tree.insert(bounds5), 1); // bounds5 does not overlap with any other bounds
assert_eq!(tree.insert(bounds6), 2); // bounds6 overlaps with bounds4, so it should have a different order
}
#[test]
fn test_random_iterations() {
let max_bounds = 100;
for seed in 1..=1000 {
// let seed = 44;
let mut tree = BoundsTree::default();
let mut rng = rand::rngs::StdRng::seed_from_u64(seed as u64);
let mut expected_quads: Vec<(Bounds<f32>, u32)> = Vec::new();
// Insert a random number of random AABBs into the tree.
let num_bounds = rng.gen_range(1..=max_bounds);
for _ in 0..num_bounds {
let min_x: f32 = rng.gen_range(-100.0..100.0);
let min_y: f32 = rng.gen_range(-100.0..100.0);
let width: f32 = rng.gen_range(0.0..50.0);
let height: f32 = rng.gen_range(0.0..50.0);
let bounds = Bounds {
origin: Point { x: min_x, y: min_y },
size: Size { width, height },
};
let expected_ordering = expected_quads
.iter()
.filter_map(|quad| quad.0.intersects(&bounds).then_some(quad.1))
.max()
.unwrap_or(0)
+ 1;
expected_quads.push((bounds, expected_ordering));
// Insert the AABB into the tree and collect intersections.
let actual_ordering = tree.insert(bounds);
assert_eq!(actual_ordering, expected_ordering);
}
}
}
}