570 lines
20 KiB
Rust
570 lines
20 KiB
Rust
use std::io::{Cursor, Write};
|
|
use std::sync::Arc;
|
|
|
|
use anyhow::Result;
|
|
use base64::write::EncoderWriter;
|
|
use cloud_llm_client::{CompletionIntent, CompletionMode};
|
|
use gpui::{
|
|
App, AppContext as _, DevicePixels, Image, ImageFormat, ObjectFit, SharedString, Size, Task,
|
|
point, px, size,
|
|
};
|
|
use image::codecs::png::PngEncoder;
|
|
use serde::{Deserialize, Serialize};
|
|
use util::ResultExt;
|
|
|
|
use crate::role::Role;
|
|
use crate::{LanguageModelToolUse, LanguageModelToolUseId};
|
|
|
|
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize, Hash)]
|
|
pub struct LanguageModelImage {
|
|
/// A base64-encoded PNG image.
|
|
pub source: SharedString,
|
|
pub size: Size<DevicePixels>,
|
|
}
|
|
|
|
impl LanguageModelImage {
|
|
pub fn len(&self) -> usize {
|
|
self.source.len()
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.source.is_empty()
|
|
}
|
|
|
|
// Parse Self from a JSON object with case-insensitive field names
|
|
pub fn from_json(obj: &serde_json::Map<String, serde_json::Value>) -> Option<Self> {
|
|
let mut source = None;
|
|
let mut size_obj = None;
|
|
|
|
// Find source and size fields (case-insensitive)
|
|
for (k, v) in obj.iter() {
|
|
match k.to_lowercase().as_str() {
|
|
"source" => source = v.as_str(),
|
|
"size" => size_obj = v.as_object(),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
let source = source?;
|
|
let size_obj = size_obj?;
|
|
|
|
let mut width = None;
|
|
let mut height = None;
|
|
|
|
// Find width and height in size object (case-insensitive)
|
|
for (k, v) in size_obj.iter() {
|
|
match k.to_lowercase().as_str() {
|
|
"width" => width = v.as_i64().map(|w| w as i32),
|
|
"height" => height = v.as_i64().map(|h| h as i32),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
Some(Self {
|
|
size: size(DevicePixels(width?), DevicePixels(height?)),
|
|
source: SharedString::from(source.to_string()),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for LanguageModelImage {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
f.debug_struct("LanguageModelImage")
|
|
.field("source", &format!("<{} bytes>", self.source.len()))
|
|
.field("size", &self.size)
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
/// Anthropic wants uploaded images to be smaller than this in both dimensions.
|
|
const ANTHROPIC_SIZE_LIMT: f32 = 1568.;
|
|
|
|
impl LanguageModelImage {
|
|
pub fn empty() -> Self {
|
|
Self {
|
|
source: "".into(),
|
|
size: size(DevicePixels(0), DevicePixels(0)),
|
|
}
|
|
}
|
|
|
|
pub fn from_image(data: Arc<Image>, cx: &mut App) -> Task<Option<Self>> {
|
|
cx.background_spawn(async move {
|
|
let image_bytes = Cursor::new(data.bytes());
|
|
let dynamic_image = match data.format() {
|
|
ImageFormat::Png => image::codecs::png::PngDecoder::new(image_bytes)
|
|
.and_then(image::DynamicImage::from_decoder),
|
|
ImageFormat::Jpeg => image::codecs::jpeg::JpegDecoder::new(image_bytes)
|
|
.and_then(image::DynamicImage::from_decoder),
|
|
ImageFormat::Webp => image::codecs::webp::WebPDecoder::new(image_bytes)
|
|
.and_then(image::DynamicImage::from_decoder),
|
|
ImageFormat::Gif => image::codecs::gif::GifDecoder::new(image_bytes)
|
|
.and_then(image::DynamicImage::from_decoder),
|
|
_ => return None,
|
|
}
|
|
.log_err()?;
|
|
|
|
let width = dynamic_image.width();
|
|
let height = dynamic_image.height();
|
|
let image_size = size(DevicePixels(width as i32), DevicePixels(height as i32));
|
|
|
|
let base64_image = {
|
|
if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32
|
|
|| image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32
|
|
{
|
|
let new_bounds = ObjectFit::ScaleDown.get_bounds(
|
|
gpui::Bounds {
|
|
origin: point(px(0.0), px(0.0)),
|
|
size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)),
|
|
},
|
|
image_size,
|
|
);
|
|
let resized_image = dynamic_image.resize(
|
|
new_bounds.size.width.0 as u32,
|
|
new_bounds.size.height.0 as u32,
|
|
image::imageops::FilterType::Triangle,
|
|
);
|
|
|
|
encode_as_base64(data, resized_image)
|
|
} else {
|
|
encode_as_base64(data, dynamic_image)
|
|
}
|
|
}
|
|
.log_err()?;
|
|
|
|
// SAFETY: The base64 encoder should not produce non-UTF8.
|
|
let source = unsafe { String::from_utf8_unchecked(base64_image) };
|
|
|
|
Some(LanguageModelImage {
|
|
size: image_size,
|
|
source: source.into(),
|
|
})
|
|
})
|
|
}
|
|
|
|
pub fn estimate_tokens(&self) -> usize {
|
|
let width = self.size.width.0.unsigned_abs() as usize;
|
|
let height = self.size.height.0.unsigned_abs() as usize;
|
|
|
|
// From: https://docs.anthropic.com/en/docs/build-with-claude/vision#calculate-image-costs
|
|
// Note that are a lot of conditions on Anthropic's API, and OpenAI doesn't use this,
|
|
// so this method is more of a rough guess.
|
|
(width * height) / 750
|
|
}
|
|
|
|
pub fn to_base64_url(&self) -> String {
|
|
format!("data:image/png;base64,{}", self.source)
|
|
}
|
|
}
|
|
|
|
fn encode_as_base64(data: Arc<Image>, image: image::DynamicImage) -> Result<Vec<u8>> {
|
|
let mut base64_image = Vec::new();
|
|
{
|
|
let mut base64_encoder = EncoderWriter::new(
|
|
Cursor::new(&mut base64_image),
|
|
&base64::engine::general_purpose::STANDARD,
|
|
);
|
|
if data.format() == ImageFormat::Png {
|
|
base64_encoder.write_all(data.bytes())?;
|
|
} else {
|
|
let mut png = Vec::new();
|
|
image.write_with_encoder(PngEncoder::new(&mut png))?;
|
|
|
|
base64_encoder.write_all(png.as_slice())?;
|
|
}
|
|
}
|
|
Ok(base64_image)
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
|
|
pub struct LanguageModelToolResult {
|
|
pub tool_use_id: LanguageModelToolUseId,
|
|
pub tool_name: Arc<str>,
|
|
pub is_error: bool,
|
|
pub content: LanguageModelToolResultContent,
|
|
pub output: Option<serde_json::Value>,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Eq, PartialEq, Hash)]
|
|
pub enum LanguageModelToolResultContent {
|
|
Text(Arc<str>),
|
|
Image(LanguageModelImage),
|
|
}
|
|
|
|
impl<'de> Deserialize<'de> for LanguageModelToolResultContent {
|
|
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
|
where
|
|
D: serde::Deserializer<'de>,
|
|
{
|
|
use serde::de::Error;
|
|
|
|
let value = serde_json::Value::deserialize(deserializer)?;
|
|
|
|
// Models can provide these responses in several styles. Try each in order.
|
|
|
|
// 1. Try as plain string
|
|
if let Ok(text) = serde_json::from_value::<String>(value.clone()) {
|
|
return Ok(Self::Text(Arc::from(text)));
|
|
}
|
|
|
|
// 2. Try as object
|
|
if let Some(obj) = value.as_object() {
|
|
// get a JSON field case-insensitively
|
|
fn get_field<'a>(
|
|
obj: &'a serde_json::Map<String, serde_json::Value>,
|
|
field: &str,
|
|
) -> Option<&'a serde_json::Value> {
|
|
obj.iter()
|
|
.find(|(k, _)| k.to_lowercase() == field.to_lowercase())
|
|
.map(|(_, v)| v)
|
|
}
|
|
|
|
// Accept wrapped text format: { "type": "text", "text": "..." }
|
|
if let (Some(type_value), Some(text_value)) =
|
|
(get_field(obj, "type"), get_field(obj, "text"))
|
|
&& let Some(type_str) = type_value.as_str()
|
|
&& type_str.to_lowercase() == "text"
|
|
&& let Some(text) = text_value.as_str()
|
|
{
|
|
return Ok(Self::Text(Arc::from(text)));
|
|
}
|
|
|
|
// Check for wrapped Text variant: { "text": "..." }
|
|
if let Some((_key, value)) = obj.iter().find(|(k, _)| k.to_lowercase() == "text")
|
|
&& obj.len() == 1
|
|
{
|
|
// Only one field, and it's "text" (case-insensitive)
|
|
if let Some(text) = value.as_str() {
|
|
return Ok(Self::Text(Arc::from(text)));
|
|
}
|
|
}
|
|
|
|
// Check for wrapped Image variant: { "image": { "source": "...", "size": ... } }
|
|
if let Some((_key, value)) = obj.iter().find(|(k, _)| k.to_lowercase() == "image")
|
|
&& obj.len() == 1
|
|
{
|
|
// Only one field, and it's "image" (case-insensitive)
|
|
// Try to parse the nested image object
|
|
if let Some(image_obj) = value.as_object()
|
|
&& let Some(image) = LanguageModelImage::from_json(image_obj)
|
|
{
|
|
return Ok(Self::Image(image));
|
|
}
|
|
}
|
|
|
|
// Try as direct Image (object with "source" and "size" fields)
|
|
if let Some(image) = LanguageModelImage::from_json(obj) {
|
|
return Ok(Self::Image(image));
|
|
}
|
|
}
|
|
|
|
// If none of the variants match, return an error with the problematic JSON
|
|
Err(D::Error::custom(format!(
|
|
"data did not match any variant of LanguageModelToolResultContent. Expected either a string, \
|
|
an object with 'type': 'text', a wrapped variant like {{\"Text\": \"...\"}}, or an image object. Got: {}",
|
|
serde_json::to_string_pretty(&value).unwrap_or_else(|_| value.to_string())
|
|
)))
|
|
}
|
|
}
|
|
|
|
impl LanguageModelToolResultContent {
|
|
pub fn to_str(&self) -> Option<&str> {
|
|
match self {
|
|
Self::Text(text) => Some(text),
|
|
Self::Image(_) => None,
|
|
}
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
match self {
|
|
Self::Text(text) => text.chars().all(|c| c.is_whitespace()),
|
|
Self::Image(_) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<&str> for LanguageModelToolResultContent {
|
|
fn from(value: &str) -> Self {
|
|
Self::Text(Arc::from(value))
|
|
}
|
|
}
|
|
|
|
impl From<String> for LanguageModelToolResultContent {
|
|
fn from(value: String) -> Self {
|
|
Self::Text(Arc::from(value))
|
|
}
|
|
}
|
|
|
|
impl From<LanguageModelImage> for LanguageModelToolResultContent {
|
|
fn from(image: LanguageModelImage) -> Self {
|
|
Self::Image(image)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
|
|
pub enum MessageContent {
|
|
Text(String),
|
|
Thinking {
|
|
text: String,
|
|
signature: Option<String>,
|
|
},
|
|
RedactedThinking(String),
|
|
Image(LanguageModelImage),
|
|
ToolUse(LanguageModelToolUse),
|
|
ToolResult(LanguageModelToolResult),
|
|
}
|
|
|
|
impl MessageContent {
|
|
pub fn to_str(&self) -> Option<&str> {
|
|
match self {
|
|
MessageContent::Text(text) => Some(text.as_str()),
|
|
MessageContent::Thinking { text, .. } => Some(text.as_str()),
|
|
MessageContent::RedactedThinking(_) => None,
|
|
MessageContent::ToolResult(tool_result) => tool_result.content.to_str(),
|
|
MessageContent::ToolUse(_) | MessageContent::Image(_) => None,
|
|
}
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
match self {
|
|
MessageContent::Text(text) => text.chars().all(|c| c.is_whitespace()),
|
|
MessageContent::Thinking { text, .. } => text.chars().all(|c| c.is_whitespace()),
|
|
MessageContent::ToolResult(tool_result) => tool_result.content.is_empty(),
|
|
MessageContent::RedactedThinking(_)
|
|
| MessageContent::ToolUse(_)
|
|
| MessageContent::Image(_) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<String> for MessageContent {
|
|
fn from(value: String) -> Self {
|
|
MessageContent::Text(value)
|
|
}
|
|
}
|
|
|
|
impl From<&str> for MessageContent {
|
|
fn from(value: &str) -> Self {
|
|
MessageContent::Text(value.to_string())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Serialize, Deserialize, Debug, PartialEq, Hash)]
|
|
pub struct LanguageModelRequestMessage {
|
|
pub role: Role,
|
|
pub content: Vec<MessageContent>,
|
|
pub cache: bool,
|
|
}
|
|
|
|
impl LanguageModelRequestMessage {
|
|
pub fn string_contents(&self) -> String {
|
|
let mut buffer = String::new();
|
|
for string in self.content.iter().filter_map(|content| content.to_str()) {
|
|
buffer.push_str(string);
|
|
}
|
|
|
|
buffer
|
|
}
|
|
|
|
pub fn contents_empty(&self) -> bool {
|
|
self.content.iter().all(|content| content.is_empty())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)]
|
|
pub struct LanguageModelRequestTool {
|
|
pub name: String,
|
|
pub description: String,
|
|
pub input_schema: serde_json::Value,
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)]
|
|
pub enum LanguageModelToolChoice {
|
|
Auto,
|
|
Any,
|
|
None,
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
|
|
pub struct LanguageModelRequest {
|
|
pub thread_id: Option<String>,
|
|
pub prompt_id: Option<String>,
|
|
pub intent: Option<CompletionIntent>,
|
|
pub mode: Option<CompletionMode>,
|
|
pub messages: Vec<LanguageModelRequestMessage>,
|
|
pub tools: Vec<LanguageModelRequestTool>,
|
|
pub tool_choice: Option<LanguageModelToolChoice>,
|
|
pub stop: Vec<String>,
|
|
pub temperature: Option<f32>,
|
|
pub thinking_allowed: bool,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
|
pub struct LanguageModelResponseMessage {
|
|
pub role: Option<Role>,
|
|
pub content: Option<String>,
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_language_model_tool_result_content_deserialization() {
|
|
let json = r#""This is plain text""#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("This is plain text".into())
|
|
);
|
|
|
|
let json = r#"{"type": "text", "text": "This is wrapped text"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("This is wrapped text".into())
|
|
);
|
|
|
|
let json = r#"{"Type": "TEXT", "TEXT": "Case insensitive"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("Case insensitive".into())
|
|
);
|
|
|
|
let json = r#"{"Text": "Wrapped variant"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("Wrapped variant".into())
|
|
);
|
|
|
|
let json = r#"{"text": "Lowercase wrapped"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("Lowercase wrapped".into())
|
|
);
|
|
|
|
// Test image deserialization
|
|
let json = r#"{
|
|
"source": "base64encodedimagedata",
|
|
"size": {
|
|
"width": 100,
|
|
"height": 200
|
|
}
|
|
}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
match result {
|
|
LanguageModelToolResultContent::Image(image) => {
|
|
assert_eq!(image.source.as_ref(), "base64encodedimagedata");
|
|
assert_eq!(image.size.width.0, 100);
|
|
assert_eq!(image.size.height.0, 200);
|
|
}
|
|
_ => panic!("Expected Image variant"),
|
|
}
|
|
|
|
// Test wrapped Image variant
|
|
let json = r#"{
|
|
"Image": {
|
|
"source": "wrappedimagedata",
|
|
"size": {
|
|
"width": 50,
|
|
"height": 75
|
|
}
|
|
}
|
|
}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
match result {
|
|
LanguageModelToolResultContent::Image(image) => {
|
|
assert_eq!(image.source.as_ref(), "wrappedimagedata");
|
|
assert_eq!(image.size.width.0, 50);
|
|
assert_eq!(image.size.height.0, 75);
|
|
}
|
|
_ => panic!("Expected Image variant"),
|
|
}
|
|
|
|
// Test wrapped Image variant with case insensitive
|
|
let json = r#"{
|
|
"image": {
|
|
"Source": "caseinsensitive",
|
|
"SIZE": {
|
|
"width": 30,
|
|
"height": 40
|
|
}
|
|
}
|
|
}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
match result {
|
|
LanguageModelToolResultContent::Image(image) => {
|
|
assert_eq!(image.source.as_ref(), "caseinsensitive");
|
|
assert_eq!(image.size.width.0, 30);
|
|
assert_eq!(image.size.height.0, 40);
|
|
}
|
|
_ => panic!("Expected Image variant"),
|
|
}
|
|
|
|
// Test that wrapped text with wrong type fails
|
|
let json = r#"{"type": "blahblah", "text": "This should fail"}"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
|
|
// Test that malformed JSON fails
|
|
let json = r#"{"invalid": "structure"}"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
|
|
// Test edge cases
|
|
let json = r#""""#; // Empty string
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(result, LanguageModelToolResultContent::Text("".into()));
|
|
|
|
// Test with extra fields in wrapped text (should be ignored)
|
|
let json = r#"{"type": "text", "text": "Hello", "extra": "field"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(result, LanguageModelToolResultContent::Text("Hello".into()));
|
|
|
|
// Test direct image with case-insensitive fields
|
|
let json = r#"{
|
|
"SOURCE": "directimage",
|
|
"Size": {
|
|
"width": 200,
|
|
"height": 300
|
|
}
|
|
}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
match result {
|
|
LanguageModelToolResultContent::Image(image) => {
|
|
assert_eq!(image.source.as_ref(), "directimage");
|
|
assert_eq!(image.size.width.0, 200);
|
|
assert_eq!(image.size.height.0, 300);
|
|
}
|
|
_ => panic!("Expected Image variant"),
|
|
}
|
|
|
|
// Test that multiple fields prevent wrapped variant interpretation
|
|
let json = r#"{"Text": "not wrapped", "extra": "field"}"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
|
|
// Test wrapped text with uppercase TEXT variant
|
|
let json = r#"{"TEXT": "Uppercase variant"}"#;
|
|
let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
|
|
assert_eq!(
|
|
result,
|
|
LanguageModelToolResultContent::Text("Uppercase variant".into())
|
|
);
|
|
|
|
// Test that numbers and other JSON values fail gracefully
|
|
let json = r#"123"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
|
|
let json = r#"null"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
|
|
let json = r#"[1, 2, 3]"#;
|
|
let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
|
|
assert!(result.is_err());
|
|
}
|
|
}
|