ZIm/crates/language_model/src/provider/cloud.rs
jvmncs c71f052276
Add ability to use o1-preview and o1-mini as custom models (#17804)
This is a barebones modification of the OpenAI provider code to
accommodate non-streaming completions. This is specifically for the o1
models, which do not support streaming. Tested that this is working by
running a `/workflow` with the following (arbitrarily chosen) settings:

```json
{
  "language_models": {
    "openai": {
      "version": "1",
      "available_models": [
        {
          "name": "o1-preview",
          "display_name": "o1-preview",
          "max_tokens": 128000,
          "max_completion_tokens": 30000
        },
        {
          "name": "o1-mini",
          "display_name": "o1-mini",
          "max_tokens": 128000,
          "max_completion_tokens": 20000
        }
      ]
    }
  },
}
```

Release Notes:

- Changed  `low_speed_timeout_in_seconds` option to `600` for OpenAI
provider to accommodate recent o1 model release.

---------

Co-authored-by: Peter <peter@zed.dev>
Co-authored-by: Bennet <bennet@zed.dev>
Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>
2024-09-13 15:42:15 -04:00

934 lines
35 KiB
Rust

use super::open_ai::count_open_ai_tokens;
use crate::provider::anthropic::map_to_language_model_completion_events;
use crate::{
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelCacheConfiguration,
LanguageModelId, LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
};
use anthropic::AnthropicError;
use anyhow::{anyhow, Result};
use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
use collections::BTreeMap;
use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
use futures::{
future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
TryStreamExt as _,
};
use gpui::{
AnyElement, AnyView, AppContext, AsyncAppContext, FontWeight, Model, ModelContext,
Subscription, Task,
};
use http_client::{AsyncBody, HttpClient, Method, Response};
use schemars::JsonSchema;
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use serde_json::value::RawValue;
use settings::{Settings, SettingsStore};
use smol::{
io::{AsyncReadExt, BufReader},
lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
};
use std::{
future,
sync::{Arc, LazyLock},
};
use strum::IntoEnumIterator;
use ui::{prelude::*, TintColor};
use crate::{LanguageModelAvailability, LanguageModelCompletionEvent, LanguageModelProvider};
use super::anthropic::count_anthropic_tokens;
pub const PROVIDER_ID: &str = "zed.dev";
pub const PROVIDER_NAME: &str = "Zed";
const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
.map(|json| serde_json::from_str(json).unwrap())
.unwrap_or_default()
});
ADDITIONAL_MODELS.as_slice()
}
#[derive(Default, Clone, Debug, PartialEq)]
pub struct ZedDotDevSettings {
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "lowercase")]
pub enum AvailableProvider {
Anthropic,
OpenAi,
Google,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
/// The provider of the language model.
pub provider: AvailableProvider,
/// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
pub name: String,
/// The name displayed in the UI, such as in the assistant panel model dropdown menu.
pub display_name: Option<String>,
/// The size of the context window, indicating the maximum number of tokens the model can process.
pub max_tokens: usize,
/// The maximum number of output tokens allowed by the model.
pub max_output_tokens: Option<u32>,
/// The maximum number of completion tokens allowed by the model (o1-* only)
pub max_completion_tokens: Option<u32>,
/// Override this model with a different Anthropic model for tool calls.
pub tool_override: Option<String>,
/// Indicates whether this custom model supports caching.
pub cache_configuration: Option<LanguageModelCacheConfiguration>,
}
pub struct CloudLanguageModelProvider {
client: Arc<Client>,
llm_api_token: LlmApiToken,
state: gpui::Model<State>,
_maintain_client_status: Task<()>,
}
pub struct State {
client: Arc<Client>,
user_store: Model<UserStore>,
status: client::Status,
accept_terms: Option<Task<Result<()>>>,
_subscription: Subscription,
}
impl State {
fn is_signed_out(&self) -> bool {
self.status.is_signed_out()
}
fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |this, mut cx| async move {
client.authenticate_and_connect(true, &cx).await?;
this.update(&mut cx, |_, cx| cx.notify())
})
}
fn has_accepted_terms_of_service(&self, cx: &AppContext) -> bool {
self.user_store
.read(cx)
.current_user_has_accepted_terms()
.unwrap_or(false)
}
fn accept_terms_of_service(&mut self, cx: &mut ModelContext<Self>) {
let user_store = self.user_store.clone();
self.accept_terms = Some(cx.spawn(move |this, mut cx| async move {
let _ = user_store
.update(&mut cx, |store, cx| store.accept_terms_of_service(cx))?
.await;
this.update(&mut cx, |this, cx| {
this.accept_terms = None;
cx.notify()
})
}));
}
}
impl CloudLanguageModelProvider {
pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let state = cx.new_model(|cx| State {
client: client.clone(),
user_store,
status,
accept_terms: None,
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
cx.notify();
}),
});
let state_ref = state.downgrade();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
if let Some(this) = state_ref.upgrade() {
_ = this.update(&mut cx, |this, cx| {
if this.status != status {
this.status = status;
cx.notify();
}
});
} else {
break;
}
}
});
Self {
client,
state,
llm_api_token: LlmApiToken::default(),
_maintain_client_status: maintain_client_status,
}
}
}
impl LanguageModelProviderState for CloudLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for CloudLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiZed
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
if cx.is_staff() {
for model in anthropic::Model::iter() {
if !matches!(model, anthropic::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::Anthropic(model));
}
}
for model in open_ai::Model::iter() {
if !matches!(model, open_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::OpenAi(model));
}
}
for model in google_ai::Model::iter() {
if !matches!(model, google_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::Google(model));
}
}
for model in ZedModel::iter() {
models.insert(model.id().to_string(), CloudModel::Zed(model));
}
} else {
models.insert(
anthropic::Model::Claude3_5Sonnet.id().to_string(),
CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
);
}
let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
zed_cloud_provider_additional_models()
} else {
&[]
};
// Override with available models from settings
for model in AllLanguageModelSettings::get_global(cx)
.zed_dot_dev
.available_models
.iter()
.chain(llm_closed_beta_models)
.cloned()
{
let model = match model.provider {
AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
tool_override: model.tool_override.clone(),
cache_configuration: model.cache_configuration.as_ref().map(|config| {
anthropic::AnthropicModelCacheConfiguration {
max_cache_anchors: config.max_cache_anchors,
should_speculate: config.should_speculate,
min_total_token: config.min_total_token,
}
}),
max_output_tokens: model.max_output_tokens,
}),
AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
max_output_tokens: model.max_output_tokens,
max_completion_tokens: model.max_completion_tokens,
}),
AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
}),
};
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(CloudLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
llm_api_token: self.llm_api_token.clone(),
client: self.client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
!self.state.read(cx).is_signed_out()
}
fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| ConfigurationView {
state: self.state.clone(),
})
.into()
}
fn must_accept_terms(&self, cx: &AppContext) -> bool {
!self.state.read(cx).has_accepted_terms_of_service(cx)
}
fn render_accept_terms(&self, cx: &mut WindowContext) -> Option<AnyElement> {
let state = self.state.read(cx);
let terms = [(
"terms_of_service",
"Terms of Service",
"https://zed.dev/terms-of-service",
)]
.map(|(id, label, url)| {
Button::new(id, label)
.style(ButtonStyle::Subtle)
.icon(IconName::ExternalLink)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, cx| cx.open_url(url))
});
if state.has_accepted_terms_of_service(cx) {
None
} else {
let disabled = state.accept_terms.is_some();
Some(
v_flex()
.gap_2()
.child(
v_flex()
.child(Label::new("Terms and Conditions").weight(FontWeight::MEDIUM))
.child(
Label::new(
"Please read and accept our terms and conditions to continue.",
)
.size(LabelSize::Small),
),
)
.child(v_flex().gap_1().children(terms))
.child(
h_flex().justify_end().child(
Button::new("accept_terms", "I've read it and accept it")
.disabled(disabled)
.on_click({
let state = self.state.downgrade();
move |_, cx| {
state
.update(cx, |state, cx| {
state.accept_terms_of_service(cx)
})
.ok();
}
}),
),
)
.into_any(),
)
}
}
fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
pub struct CloudLanguageModel {
id: LanguageModelId,
model: CloudModel,
llm_api_token: LlmApiToken,
client: Arc<Client>,
request_limiter: RateLimiter,
}
#[derive(Clone, Default)]
struct LlmApiToken(Arc<RwLock<Option<String>>>);
impl CloudLanguageModel {
async fn perform_llm_completion(
client: Arc<Client>,
llm_api_token: LlmApiToken,
body: PerformCompletionParams,
) -> Result<Response<AsyncBody>> {
let http_client = &client.http_client();
let mut token = llm_api_token.acquire(&client).await?;
let mut did_retry = false;
let response = loop {
let request = http_client::Request::builder()
.method(Method::POST)
.uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
.header("Content-Type", "application/json")
.header("Authorization", format!("Bearer {token}"))
.body(serde_json::to_string(&body)?.into())?;
let mut response = http_client.send(request).await?;
if response.status().is_success() {
break response;
} else if !did_retry
&& response
.headers()
.get(EXPIRED_LLM_TOKEN_HEADER_NAME)
.is_some()
{
did_retry = true;
token = llm_api_token.refresh(&client).await?;
} else {
let mut body = String::new();
response.body_mut().read_to_string(&mut body).await?;
break Err(anyhow!(
"cloud language model completion failed with status {}: {body}",
response.status()
))?;
}
};
Ok(response)
}
}
impl LanguageModel for CloudLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn icon(&self) -> Option<IconName> {
self.model.icon()
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("zed.dev/{}", self.model.id())
}
fn availability(&self) -> LanguageModelAvailability {
self.model.availability()
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
match &self.model {
CloudModel::Anthropic(model) => {
model
.cache_configuration()
.map(|cache| LanguageModelCacheConfiguration {
max_cache_anchors: cache.max_cache_anchors,
should_speculate: cache.should_speculate,
min_total_token: cache.min_total_token,
})
}
CloudModel::OpenAi(_) | CloudModel::Google(_) | CloudModel::Zed(_) => None,
}
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match self.model.clone() {
CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
CloudModel::Google(model) => {
let client = self.client.clone();
let request = request.into_google(model.id().into());
let request = google_ai::CountTokensRequest {
contents: request.contents,
};
async move {
let request = serde_json::to_string(&request)?;
let response = client
.request(proto::CountLanguageModelTokens {
provider: proto::LanguageModelProvider::Google as i32,
request,
})
.await?;
Ok(response.token_count as usize)
}
.boxed()
}
CloudModel::Zed(_) => {
count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
}
}
}
fn stream_completion(
&self,
request: LanguageModelRequest,
_cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
match &self.model {
CloudModel::Anthropic(model) => {
let request = request.into_anthropic(model.id().into(), model.max_output_tokens());
let client = self.client.clone();
let llm_api_token = self.llm_api_token.clone();
let future = self.request_limiter.stream(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::Anthropic,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(map_to_language_model_completion_events(Box::pin(
response_lines(response).map_err(AnthropicError::Other),
)))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
CloudModel::OpenAi(model) => {
let client = self.client.clone();
let request = request.into_open_ai(model.id().into(), model.max_output_tokens());
let llm_api_token = self.llm_api_token.clone();
let future = self.request_limiter.stream(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::OpenAi,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(open_ai::extract_text_from_events(response_lines(response)))
});
async move {
Ok(future
.await?
.map(|result| result.map(LanguageModelCompletionEvent::Text))
.boxed())
}
.boxed()
}
CloudModel::Google(model) => {
let client = self.client.clone();
let request = request.into_google(model.id().into());
let llm_api_token = self.llm_api_token.clone();
let future = self.request_limiter.stream(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::Google,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(google_ai::extract_text_from_events(response_lines(
response,
)))
});
async move {
Ok(future
.await?
.map(|result| result.map(LanguageModelCompletionEvent::Text))
.boxed())
}
.boxed()
}
CloudModel::Zed(model) => {
let client = self.client.clone();
let mut request = request.into_open_ai(model.id().into(), None);
request.max_tokens = Some(4000);
let llm_api_token = self.llm_api_token.clone();
let future = self.request_limiter.stream(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::Zed,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(open_ai::extract_text_from_events(response_lines(response)))
});
async move {
Ok(future
.await?
.map(|result| result.map(LanguageModelCompletionEvent::Text))
.boxed())
}
.boxed()
}
}
}
fn use_any_tool(
&self,
request: LanguageModelRequest,
tool_name: String,
tool_description: String,
input_schema: serde_json::Value,
_cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let client = self.client.clone();
let llm_api_token = self.llm_api_token.clone();
match &self.model {
CloudModel::Anthropic(model) => {
let mut request =
request.into_anthropic(model.tool_model_id().into(), model.max_output_tokens());
request.tool_choice = Some(anthropic::ToolChoice::Tool {
name: tool_name.clone(),
});
request.tools = vec![anthropic::Tool {
name: tool_name.clone(),
description: tool_description,
input_schema,
}];
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::Anthropic,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(anthropic::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
CloudModel::OpenAi(model) => {
let mut request =
request.into_open_ai(model.id().into(), model.max_output_tokens());
request.tool_choice = Some(open_ai::ToolChoice::Other(
open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
},
},
));
request.tools = vec![open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: Some(tool_description),
parameters: Some(input_schema),
},
}];
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::OpenAi,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(open_ai::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
CloudModel::Google(_) => {
future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
}
CloudModel::Zed(model) => {
// All Zed models are OpenAI-based at the time of writing.
let mut request = request.into_open_ai(model.id().into(), None);
request.tool_choice = Some(open_ai::ToolChoice::Other(
open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
},
},
));
request.tools = vec![open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: Some(tool_description),
parameters: Some(input_schema),
},
}];
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
client.clone(),
llm_api_token,
PerformCompletionParams {
provider: client::LanguageModelProvider::Zed,
model: request.model.clone(),
provider_request: RawValue::from_string(serde_json::to_string(
&request,
)?)?,
},
)
.await?;
Ok(open_ai::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
}
}
}
fn response_lines<T: DeserializeOwned>(
response: Response<AsyncBody>,
) -> impl Stream<Item = Result<T>> {
futures::stream::try_unfold(
(String::new(), BufReader::new(response.into_body())),
move |(mut line, mut body)| async {
match body.read_line(&mut line).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: T = serde_json::from_str(&line)?;
line.clear();
Ok(Some((event, (line, body))))
}
Err(e) => Err(e.into()),
}
},
)
}
impl LlmApiToken {
async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
let lock = self.0.upgradable_read().await;
if let Some(token) = lock.as_ref() {
Ok(token.to_string())
} else {
Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, client).await
}
}
async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
Self::fetch(self.0.write().await, client).await
}
async fn fetch<'a>(
mut lock: RwLockWriteGuard<'a, Option<String>>,
client: &Arc<Client>,
) -> Result<String> {
let response = client.request(proto::GetLlmToken {}).await?;
*lock = Some(response.token.clone());
Ok(response.token.clone())
}
}
struct ConfigurationView {
state: gpui::Model<State>,
}
impl ConfigurationView {
fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
self.state.update(cx, |state, cx| {
state.authenticate(cx).detach_and_log_err(cx);
});
cx.notify();
}
fn render_accept_terms(&mut self, cx: &mut ViewContext<Self>) -> Option<AnyElement> {
if self.state.read(cx).has_accepted_terms_of_service(cx) {
return None;
}
let accept_terms_disabled = self.state.read(cx).accept_terms.is_some();
let terms_button = Button::new("terms_of_service", "Terms of Service")
.style(ButtonStyle::Subtle)
.icon(IconName::ExternalLink)
.icon_color(Color::Muted)
.on_click(move |_, cx| cx.open_url("https://zed.dev/terms-of-service"));
let text =
"In order to use Zed AI, please read and accept our terms and conditions to continue:";
let form = v_flex()
.gap_2()
.child(Label::new("Terms and Conditions"))
.child(Label::new(text))
.child(h_flex().justify_center().child(terms_button))
.child(
h_flex().justify_center().child(
Button::new("accept_terms", "I've read and accept the terms of service")
.style(ButtonStyle::Tinted(TintColor::Accent))
.disabled(accept_terms_disabled)
.on_click({
let state = self.state.downgrade();
move |_, cx| {
state
.update(cx, |state, cx| state.accept_terms_of_service(cx))
.ok();
}
}),
),
);
Some(form.into_any())
}
}
impl Render for ConfigurationView {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const ZED_AI_URL: &str = "https://zed.dev/ai";
const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
let is_connected = !self.state.read(cx).is_signed_out();
let plan = self.state.read(cx).user_store.read(cx).current_plan();
let has_accepted_terms = self.state.read(cx).has_accepted_terms_of_service(cx);
let is_pro = plan == Some(proto::Plan::ZedPro);
let subscription_text = Label::new(if is_pro {
"You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
} else {
"You have basic access to models from Anthropic through the Zed AI Free plan."
});
let manage_subscription_button = if is_pro {
Some(
h_flex().child(
Button::new("manage_settings", "Manage Subscription")
.style(ButtonStyle::Tinted(TintColor::Accent))
.on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
),
)
} else if cx.has_flag::<ZedPro>() {
Some(
h_flex()
.gap_2()
.child(
Button::new("learn_more", "Learn more")
.style(ButtonStyle::Subtle)
.on_click(cx.listener(|_, _, cx| cx.open_url(ZED_AI_URL))),
)
.child(
Button::new("upgrade", "Upgrade")
.style(ButtonStyle::Subtle)
.color(Color::Accent)
.on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
),
)
} else {
None
};
if is_connected {
v_flex()
.gap_3()
.max_w_4_5()
.children(self.render_accept_terms(cx))
.when(has_accepted_terms, |this| {
this.child(subscription_text)
.children(manage_subscription_button)
})
} else {
v_flex()
.gap_6()
.child(Label::new("Use the zed.dev to access language models."))
.child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}
}