
Removed deprecated Qwen2 7B Instruct model from zed.dev provider (staff only). Release Notes: - N/A
881 lines
33 KiB
Rust
881 lines
33 KiB
Rust
use super::open_ai::count_open_ai_tokens;
|
|
use crate::provider::anthropic::map_to_language_model_completion_events;
|
|
use crate::{
|
|
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelCacheConfiguration,
|
|
LanguageModelId, LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
|
|
LanguageModelProviderState, LanguageModelRequest, RateLimiter,
|
|
};
|
|
use anthropic::AnthropicError;
|
|
use anyhow::{anyhow, Result};
|
|
use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
|
|
use collections::BTreeMap;
|
|
use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
|
|
use futures::{
|
|
future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
|
|
TryStreamExt as _,
|
|
};
|
|
use gpui::{
|
|
AnyElement, AnyView, AppContext, AsyncAppContext, FontWeight, Model, ModelContext,
|
|
Subscription, Task,
|
|
};
|
|
use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response};
|
|
use schemars::JsonSchema;
|
|
use serde::{de::DeserializeOwned, Deserialize, Serialize};
|
|
use serde_json::value::RawValue;
|
|
use settings::{Settings, SettingsStore};
|
|
use smol::{
|
|
io::{AsyncReadExt, BufReader},
|
|
lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
|
|
};
|
|
use std::time::Duration;
|
|
use std::{
|
|
future,
|
|
sync::{Arc, LazyLock},
|
|
};
|
|
use strum::IntoEnumIterator;
|
|
use ui::{prelude::*, TintColor};
|
|
|
|
use crate::{LanguageModelAvailability, LanguageModelCompletionEvent, LanguageModelProvider};
|
|
|
|
use super::anthropic::count_anthropic_tokens;
|
|
|
|
pub const PROVIDER_ID: &str = "zed.dev";
|
|
pub const PROVIDER_NAME: &str = "Zed";
|
|
|
|
const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
|
|
option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
|
|
|
|
fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
|
|
static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
|
|
ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
|
|
.map(|json| serde_json::from_str(json).unwrap())
|
|
.unwrap_or_default()
|
|
});
|
|
ADDITIONAL_MODELS.as_slice()
|
|
}
|
|
|
|
#[derive(Default, Clone, Debug, PartialEq)]
|
|
pub struct ZedDotDevSettings {
|
|
pub available_models: Vec<AvailableModel>,
|
|
pub low_speed_timeout: Option<Duration>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
#[serde(rename_all = "lowercase")]
|
|
pub enum AvailableProvider {
|
|
Anthropic,
|
|
OpenAi,
|
|
Google,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
pub struct AvailableModel {
|
|
/// The provider of the language model.
|
|
pub provider: AvailableProvider,
|
|
/// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
|
|
pub name: String,
|
|
/// The name displayed in the UI, such as in the assistant panel model dropdown menu.
|
|
pub display_name: Option<String>,
|
|
/// The size of the context window, indicating the maximum number of tokens the model can process.
|
|
pub max_tokens: usize,
|
|
/// The maximum number of output tokens allowed by the model.
|
|
pub max_output_tokens: Option<u32>,
|
|
/// The maximum number of completion tokens allowed by the model (o1-* only)
|
|
pub max_completion_tokens: Option<u32>,
|
|
/// Override this model with a different Anthropic model for tool calls.
|
|
pub tool_override: Option<String>,
|
|
/// Indicates whether this custom model supports caching.
|
|
pub cache_configuration: Option<LanguageModelCacheConfiguration>,
|
|
/// The default temperature to use for this model.
|
|
pub default_temperature: Option<f32>,
|
|
}
|
|
|
|
pub struct CloudLanguageModelProvider {
|
|
client: Arc<Client>,
|
|
llm_api_token: LlmApiToken,
|
|
state: gpui::Model<State>,
|
|
_maintain_client_status: Task<()>,
|
|
}
|
|
|
|
pub struct State {
|
|
client: Arc<Client>,
|
|
user_store: Model<UserStore>,
|
|
status: client::Status,
|
|
accept_terms: Option<Task<Result<()>>>,
|
|
_subscription: Subscription,
|
|
}
|
|
|
|
impl State {
|
|
fn is_signed_out(&self) -> bool {
|
|
self.status.is_signed_out()
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
|
|
let client = self.client.clone();
|
|
cx.spawn(move |this, mut cx| async move {
|
|
client.authenticate_and_connect(true, &cx).await?;
|
|
this.update(&mut cx, |_, cx| cx.notify())
|
|
})
|
|
}
|
|
|
|
fn has_accepted_terms_of_service(&self, cx: &AppContext) -> bool {
|
|
self.user_store
|
|
.read(cx)
|
|
.current_user_has_accepted_terms()
|
|
.unwrap_or(false)
|
|
}
|
|
|
|
fn accept_terms_of_service(&mut self, cx: &mut ModelContext<Self>) {
|
|
let user_store = self.user_store.clone();
|
|
self.accept_terms = Some(cx.spawn(move |this, mut cx| async move {
|
|
let _ = user_store
|
|
.update(&mut cx, |store, cx| store.accept_terms_of_service(cx))?
|
|
.await;
|
|
this.update(&mut cx, |this, cx| {
|
|
this.accept_terms = None;
|
|
cx.notify()
|
|
})
|
|
}));
|
|
}
|
|
}
|
|
|
|
impl CloudLanguageModelProvider {
|
|
pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
|
|
let mut status_rx = client.status();
|
|
let status = *status_rx.borrow();
|
|
|
|
let state = cx.new_model(|cx| State {
|
|
client: client.clone(),
|
|
user_store,
|
|
status,
|
|
accept_terms: None,
|
|
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
|
|
cx.notify();
|
|
}),
|
|
});
|
|
|
|
let state_ref = state.downgrade();
|
|
let maintain_client_status = cx.spawn(|mut cx| async move {
|
|
while let Some(status) = status_rx.next().await {
|
|
if let Some(this) = state_ref.upgrade() {
|
|
_ = this.update(&mut cx, |this, cx| {
|
|
if this.status != status {
|
|
this.status = status;
|
|
cx.notify();
|
|
}
|
|
});
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
|
|
Self {
|
|
client,
|
|
state,
|
|
llm_api_token: LlmApiToken::default(),
|
|
_maintain_client_status: maintain_client_status,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProviderState for CloudLanguageModelProvider {
|
|
type ObservableEntity = State;
|
|
|
|
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
|
|
Some(self.state.clone())
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProvider for CloudLanguageModelProvider {
|
|
fn id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn icon(&self) -> IconName {
|
|
IconName::AiZed
|
|
}
|
|
|
|
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
|
|
let mut models = BTreeMap::default();
|
|
|
|
if cx.is_staff() {
|
|
for model in anthropic::Model::iter() {
|
|
if !matches!(model, anthropic::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::Anthropic(model));
|
|
}
|
|
}
|
|
for model in open_ai::Model::iter() {
|
|
if !matches!(model, open_ai::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::OpenAi(model));
|
|
}
|
|
}
|
|
for model in google_ai::Model::iter() {
|
|
if !matches!(model, google_ai::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::Google(model));
|
|
}
|
|
}
|
|
} else {
|
|
models.insert(
|
|
anthropic::Model::Claude3_5Sonnet.id().to_string(),
|
|
CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
|
|
);
|
|
}
|
|
|
|
let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
|
|
zed_cloud_provider_additional_models()
|
|
} else {
|
|
&[]
|
|
};
|
|
|
|
// Override with available models from settings
|
|
for model in AllLanguageModelSettings::get_global(cx)
|
|
.zed_dot_dev
|
|
.available_models
|
|
.iter()
|
|
.chain(llm_closed_beta_models)
|
|
.cloned()
|
|
{
|
|
let model = match model.provider {
|
|
AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
tool_override: model.tool_override.clone(),
|
|
cache_configuration: model.cache_configuration.as_ref().map(|config| {
|
|
anthropic::AnthropicModelCacheConfiguration {
|
|
max_cache_anchors: config.max_cache_anchors,
|
|
should_speculate: config.should_speculate,
|
|
min_total_token: config.min_total_token,
|
|
}
|
|
}),
|
|
default_temperature: model.default_temperature,
|
|
max_output_tokens: model.max_output_tokens,
|
|
}),
|
|
AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
max_output_tokens: model.max_output_tokens,
|
|
max_completion_tokens: model.max_completion_tokens,
|
|
}),
|
|
AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
}),
|
|
};
|
|
models.insert(model.id().to_string(), model.clone());
|
|
}
|
|
|
|
models
|
|
.into_values()
|
|
.map(|model| {
|
|
Arc::new(CloudLanguageModel {
|
|
id: LanguageModelId::from(model.id().to_string()),
|
|
model,
|
|
llm_api_token: self.llm_api_token.clone(),
|
|
client: self.client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
}) as Arc<dyn LanguageModel>
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn is_authenticated(&self, cx: &AppContext) -> bool {
|
|
!self.state.read(cx).is_signed_out()
|
|
}
|
|
|
|
fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
|
|
Task::ready(Ok(()))
|
|
}
|
|
|
|
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
|
|
cx.new_view(|_cx| ConfigurationView {
|
|
state: self.state.clone(),
|
|
})
|
|
.into()
|
|
}
|
|
|
|
fn must_accept_terms(&self, cx: &AppContext) -> bool {
|
|
!self.state.read(cx).has_accepted_terms_of_service(cx)
|
|
}
|
|
|
|
fn render_accept_terms(&self, cx: &mut WindowContext) -> Option<AnyElement> {
|
|
let state = self.state.read(cx);
|
|
|
|
let terms = [(
|
|
"terms_of_service",
|
|
"Terms of Service",
|
|
"https://zed.dev/terms-of-service",
|
|
)]
|
|
.map(|(id, label, url)| {
|
|
Button::new(id, label)
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ExternalLink)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, cx| cx.open_url(url))
|
|
});
|
|
|
|
if state.has_accepted_terms_of_service(cx) {
|
|
None
|
|
} else {
|
|
let disabled = state.accept_terms.is_some();
|
|
Some(
|
|
v_flex()
|
|
.gap_2()
|
|
.child(
|
|
v_flex()
|
|
.child(Label::new("Terms and Conditions").weight(FontWeight::MEDIUM))
|
|
.child(
|
|
Label::new(
|
|
"Please read and accept our terms and conditions to continue.",
|
|
)
|
|
.size(LabelSize::Small),
|
|
),
|
|
)
|
|
.child(v_flex().gap_1().children(terms))
|
|
.child(
|
|
h_flex().justify_end().child(
|
|
Button::new("accept_terms", "I've read it and accept it")
|
|
.disabled(disabled)
|
|
.on_click({
|
|
let state = self.state.downgrade();
|
|
move |_, cx| {
|
|
state
|
|
.update(cx, |state, cx| {
|
|
state.accept_terms_of_service(cx)
|
|
})
|
|
.ok();
|
|
}
|
|
}),
|
|
),
|
|
)
|
|
.into_any(),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
|
|
Task::ready(Ok(()))
|
|
}
|
|
}
|
|
|
|
pub struct CloudLanguageModel {
|
|
id: LanguageModelId,
|
|
model: CloudModel,
|
|
llm_api_token: LlmApiToken,
|
|
client: Arc<Client>,
|
|
request_limiter: RateLimiter,
|
|
}
|
|
|
|
#[derive(Clone, Default)]
|
|
struct LlmApiToken(Arc<RwLock<Option<String>>>);
|
|
|
|
impl CloudLanguageModel {
|
|
async fn perform_llm_completion(
|
|
client: Arc<Client>,
|
|
llm_api_token: LlmApiToken,
|
|
body: PerformCompletionParams,
|
|
low_speed_timeout: Option<Duration>,
|
|
) -> Result<Response<AsyncBody>> {
|
|
let http_client = &client.http_client();
|
|
|
|
let mut token = llm_api_token.acquire(&client).await?;
|
|
let mut did_retry = false;
|
|
|
|
let response = loop {
|
|
let mut request_builder = http_client::Request::builder();
|
|
if let Some(low_speed_timeout) = low_speed_timeout {
|
|
request_builder = request_builder.read_timeout(low_speed_timeout);
|
|
};
|
|
let request = request_builder
|
|
.method(Method::POST)
|
|
.uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
|
|
.header("Content-Type", "application/json")
|
|
.header("Authorization", format!("Bearer {token}"))
|
|
.body(serde_json::to_string(&body)?.into())?;
|
|
let mut response = http_client.send(request).await?;
|
|
if response.status().is_success() {
|
|
break response;
|
|
} else if !did_retry
|
|
&& response
|
|
.headers()
|
|
.get(EXPIRED_LLM_TOKEN_HEADER_NAME)
|
|
.is_some()
|
|
{
|
|
did_retry = true;
|
|
token = llm_api_token.refresh(&client).await?;
|
|
} else {
|
|
let mut body = String::new();
|
|
response.body_mut().read_to_string(&mut body).await?;
|
|
break Err(anyhow!(
|
|
"cloud language model completion failed with status {}: {body}",
|
|
response.status()
|
|
))?;
|
|
}
|
|
};
|
|
|
|
Ok(response)
|
|
}
|
|
}
|
|
|
|
impl LanguageModel for CloudLanguageModel {
|
|
fn id(&self) -> LanguageModelId {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelName {
|
|
LanguageModelName::from(self.model.display_name().to_string())
|
|
}
|
|
|
|
fn icon(&self) -> Option<IconName> {
|
|
self.model.icon()
|
|
}
|
|
|
|
fn provider_id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn provider_name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn telemetry_id(&self) -> String {
|
|
format!("zed.dev/{}", self.model.id())
|
|
}
|
|
|
|
fn availability(&self) -> LanguageModelAvailability {
|
|
self.model.availability()
|
|
}
|
|
|
|
fn max_token_count(&self) -> usize {
|
|
self.model.max_token_count()
|
|
}
|
|
|
|
fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
|
|
match &self.model {
|
|
CloudModel::Anthropic(model) => {
|
|
model
|
|
.cache_configuration()
|
|
.map(|cache| LanguageModelCacheConfiguration {
|
|
max_cache_anchors: cache.max_cache_anchors,
|
|
should_speculate: cache.should_speculate,
|
|
min_total_token: cache.min_total_token,
|
|
})
|
|
}
|
|
CloudModel::OpenAi(_) | CloudModel::Google(_) => None,
|
|
}
|
|
}
|
|
|
|
fn count_tokens(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AppContext,
|
|
) -> BoxFuture<'static, Result<usize>> {
|
|
match self.model.clone() {
|
|
CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
|
|
CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
|
|
CloudModel::Google(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_google(model.id().into());
|
|
let request = google_ai::CountTokensRequest {
|
|
contents: request.contents,
|
|
};
|
|
async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let response = client
|
|
.request(proto::CountLanguageModelTokens {
|
|
provider: proto::LanguageModelProvider::Google as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
Ok(response.token_count as usize)
|
|
}
|
|
.boxed()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AsyncAppContext,
|
|
) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
|
|
let openai_low_speed_timeout =
|
|
AllLanguageModelSettings::try_read_global(cx, |s| s.openai.low_speed_timeout.unwrap());
|
|
|
|
match &self.model {
|
|
CloudModel::Anthropic(model) => {
|
|
let request = request.into_anthropic(
|
|
model.id().into(),
|
|
model.default_temperature(),
|
|
model.max_output_tokens(),
|
|
);
|
|
let client = self.client.clone();
|
|
let llm_api_token = self.llm_api_token.clone();
|
|
let future = self.request_limiter.stream(async move {
|
|
let response = Self::perform_llm_completion(
|
|
client.clone(),
|
|
llm_api_token,
|
|
PerformCompletionParams {
|
|
provider: client::LanguageModelProvider::Anthropic,
|
|
model: request.model.clone(),
|
|
provider_request: RawValue::from_string(serde_json::to_string(
|
|
&request,
|
|
)?)?,
|
|
},
|
|
None,
|
|
)
|
|
.await?;
|
|
Ok(map_to_language_model_completion_events(Box::pin(
|
|
response_lines(response).map_err(AnthropicError::Other),
|
|
)))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
CloudModel::OpenAi(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_open_ai(model.id().into(), model.max_output_tokens());
|
|
let llm_api_token = self.llm_api_token.clone();
|
|
let future = self.request_limiter.stream(async move {
|
|
let response = Self::perform_llm_completion(
|
|
client.clone(),
|
|
llm_api_token,
|
|
PerformCompletionParams {
|
|
provider: client::LanguageModelProvider::OpenAi,
|
|
model: request.model.clone(),
|
|
provider_request: RawValue::from_string(serde_json::to_string(
|
|
&request,
|
|
)?)?,
|
|
},
|
|
openai_low_speed_timeout,
|
|
)
|
|
.await?;
|
|
Ok(open_ai::extract_text_from_events(response_lines(response)))
|
|
});
|
|
async move {
|
|
Ok(future
|
|
.await?
|
|
.map(|result| result.map(LanguageModelCompletionEvent::Text))
|
|
.boxed())
|
|
}
|
|
.boxed()
|
|
}
|
|
CloudModel::Google(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_google(model.id().into());
|
|
let llm_api_token = self.llm_api_token.clone();
|
|
let future = self.request_limiter.stream(async move {
|
|
let response = Self::perform_llm_completion(
|
|
client.clone(),
|
|
llm_api_token,
|
|
PerformCompletionParams {
|
|
provider: client::LanguageModelProvider::Google,
|
|
model: request.model.clone(),
|
|
provider_request: RawValue::from_string(serde_json::to_string(
|
|
&request,
|
|
)?)?,
|
|
},
|
|
None,
|
|
)
|
|
.await?;
|
|
Ok(google_ai::extract_text_from_events(response_lines(
|
|
response,
|
|
)))
|
|
});
|
|
async move {
|
|
Ok(future
|
|
.await?
|
|
.map(|result| result.map(LanguageModelCompletionEvent::Text))
|
|
.boxed())
|
|
}
|
|
.boxed()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn use_any_tool(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
tool_name: String,
|
|
tool_description: String,
|
|
input_schema: serde_json::Value,
|
|
_cx: &AsyncAppContext,
|
|
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
|
|
let client = self.client.clone();
|
|
let llm_api_token = self.llm_api_token.clone();
|
|
|
|
match &self.model {
|
|
CloudModel::Anthropic(model) => {
|
|
let mut request = request.into_anthropic(
|
|
model.tool_model_id().into(),
|
|
model.default_temperature(),
|
|
model.max_output_tokens(),
|
|
);
|
|
request.tool_choice = Some(anthropic::ToolChoice::Tool {
|
|
name: tool_name.clone(),
|
|
});
|
|
request.tools = vec![anthropic::Tool {
|
|
name: tool_name.clone(),
|
|
description: tool_description,
|
|
input_schema,
|
|
}];
|
|
|
|
self.request_limiter
|
|
.run(async move {
|
|
let response = Self::perform_llm_completion(
|
|
client.clone(),
|
|
llm_api_token,
|
|
PerformCompletionParams {
|
|
provider: client::LanguageModelProvider::Anthropic,
|
|
model: request.model.clone(),
|
|
provider_request: RawValue::from_string(serde_json::to_string(
|
|
&request,
|
|
)?)?,
|
|
},
|
|
None,
|
|
)
|
|
.await?;
|
|
|
|
Ok(anthropic::extract_tool_args_from_events(
|
|
tool_name,
|
|
Box::pin(response_lines(response)),
|
|
)
|
|
.await?
|
|
.boxed())
|
|
})
|
|
.boxed()
|
|
}
|
|
CloudModel::OpenAi(model) => {
|
|
let mut request =
|
|
request.into_open_ai(model.id().into(), model.max_output_tokens());
|
|
request.tool_choice = Some(open_ai::ToolChoice::Other(
|
|
open_ai::ToolDefinition::Function {
|
|
function: open_ai::FunctionDefinition {
|
|
name: tool_name.clone(),
|
|
description: None,
|
|
parameters: None,
|
|
},
|
|
},
|
|
));
|
|
request.tools = vec![open_ai::ToolDefinition::Function {
|
|
function: open_ai::FunctionDefinition {
|
|
name: tool_name.clone(),
|
|
description: Some(tool_description),
|
|
parameters: Some(input_schema),
|
|
},
|
|
}];
|
|
|
|
self.request_limiter
|
|
.run(async move {
|
|
let response = Self::perform_llm_completion(
|
|
client.clone(),
|
|
llm_api_token,
|
|
PerformCompletionParams {
|
|
provider: client::LanguageModelProvider::OpenAi,
|
|
model: request.model.clone(),
|
|
provider_request: RawValue::from_string(serde_json::to_string(
|
|
&request,
|
|
)?)?,
|
|
},
|
|
None,
|
|
)
|
|
.await?;
|
|
|
|
Ok(open_ai::extract_tool_args_from_events(
|
|
tool_name,
|
|
Box::pin(response_lines(response)),
|
|
)
|
|
.await?
|
|
.boxed())
|
|
})
|
|
.boxed()
|
|
}
|
|
CloudModel::Google(_) => {
|
|
future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn response_lines<T: DeserializeOwned>(
|
|
response: Response<AsyncBody>,
|
|
) -> impl Stream<Item = Result<T>> {
|
|
futures::stream::try_unfold(
|
|
(String::new(), BufReader::new(response.into_body())),
|
|
move |(mut line, mut body)| async {
|
|
match body.read_line(&mut line).await {
|
|
Ok(0) => Ok(None),
|
|
Ok(_) => {
|
|
let event: T = serde_json::from_str(&line)?;
|
|
line.clear();
|
|
Ok(Some((event, (line, body))))
|
|
}
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
},
|
|
)
|
|
}
|
|
|
|
impl LlmApiToken {
|
|
async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
|
|
let lock = self.0.upgradable_read().await;
|
|
if let Some(token) = lock.as_ref() {
|
|
Ok(token.to_string())
|
|
} else {
|
|
Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, client).await
|
|
}
|
|
}
|
|
|
|
async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
|
|
Self::fetch(self.0.write().await, client).await
|
|
}
|
|
|
|
async fn fetch<'a>(
|
|
mut lock: RwLockWriteGuard<'a, Option<String>>,
|
|
client: &Arc<Client>,
|
|
) -> Result<String> {
|
|
let response = client.request(proto::GetLlmToken {}).await?;
|
|
*lock = Some(response.token.clone());
|
|
Ok(response.token.clone())
|
|
}
|
|
}
|
|
|
|
struct ConfigurationView {
|
|
state: gpui::Model<State>,
|
|
}
|
|
|
|
impl ConfigurationView {
|
|
fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
|
|
self.state.update(cx, |state, cx| {
|
|
state.authenticate(cx).detach_and_log_err(cx);
|
|
});
|
|
cx.notify();
|
|
}
|
|
|
|
fn render_accept_terms(&mut self, cx: &mut ViewContext<Self>) -> Option<AnyElement> {
|
|
if self.state.read(cx).has_accepted_terms_of_service(cx) {
|
|
return None;
|
|
}
|
|
|
|
let accept_terms_disabled = self.state.read(cx).accept_terms.is_some();
|
|
|
|
let terms_button = Button::new("terms_of_service", "Terms of Service")
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ExternalLink)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, cx| cx.open_url("https://zed.dev/terms-of-service"));
|
|
|
|
let text =
|
|
"In order to use Zed AI, please read and accept our terms and conditions to continue:";
|
|
|
|
let form = v_flex()
|
|
.gap_2()
|
|
.child(Label::new("Terms and Conditions"))
|
|
.child(Label::new(text))
|
|
.child(h_flex().justify_center().child(terms_button))
|
|
.child(
|
|
h_flex().justify_center().child(
|
|
Button::new("accept_terms", "I've read and accept the terms of service")
|
|
.style(ButtonStyle::Tinted(TintColor::Accent))
|
|
.disabled(accept_terms_disabled)
|
|
.on_click({
|
|
let state = self.state.downgrade();
|
|
move |_, cx| {
|
|
state
|
|
.update(cx, |state, cx| state.accept_terms_of_service(cx))
|
|
.ok();
|
|
}
|
|
}),
|
|
),
|
|
);
|
|
|
|
Some(form.into_any())
|
|
}
|
|
}
|
|
|
|
impl Render for ConfigurationView {
|
|
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
|
|
const ZED_AI_URL: &str = "https://zed.dev/ai";
|
|
const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
|
|
|
|
let is_connected = !self.state.read(cx).is_signed_out();
|
|
let plan = self.state.read(cx).user_store.read(cx).current_plan();
|
|
let has_accepted_terms = self.state.read(cx).has_accepted_terms_of_service(cx);
|
|
|
|
let is_pro = plan == Some(proto::Plan::ZedPro);
|
|
let subscription_text = Label::new(if is_pro {
|
|
"You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
|
|
} else {
|
|
"You have basic access to models from Anthropic through the Zed AI Free plan."
|
|
});
|
|
let manage_subscription_button = if is_pro {
|
|
Some(
|
|
h_flex().child(
|
|
Button::new("manage_settings", "Manage Subscription")
|
|
.style(ButtonStyle::Tinted(TintColor::Accent))
|
|
.on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
|
|
),
|
|
)
|
|
} else if cx.has_flag::<ZedPro>() {
|
|
Some(
|
|
h_flex()
|
|
.gap_2()
|
|
.child(
|
|
Button::new("learn_more", "Learn more")
|
|
.style(ButtonStyle::Subtle)
|
|
.on_click(cx.listener(|_, _, cx| cx.open_url(ZED_AI_URL))),
|
|
)
|
|
.child(
|
|
Button::new("upgrade", "Upgrade")
|
|
.style(ButtonStyle::Subtle)
|
|
.color(Color::Accent)
|
|
.on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
|
|
),
|
|
)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
if is_connected {
|
|
v_flex()
|
|
.gap_3()
|
|
.max_w_4_5()
|
|
.children(self.render_accept_terms(cx))
|
|
.when(has_accepted_terms, |this| {
|
|
this.child(subscription_text)
|
|
.children(manage_subscription_button)
|
|
})
|
|
} else {
|
|
v_flex()
|
|
.gap_6()
|
|
.child(Label::new("Use the zed.dev to access language models."))
|
|
.child(
|
|
v_flex()
|
|
.gap_2()
|
|
.child(
|
|
Button::new("sign_in", "Sign in")
|
|
.icon_color(Color::Muted)
|
|
.icon(IconName::Github)
|
|
.icon_position(IconPosition::Start)
|
|
.style(ButtonStyle::Filled)
|
|
.full_width()
|
|
.on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
|
|
)
|
|
.child(
|
|
div().flex().w_full().items_center().child(
|
|
Label::new("Sign in to enable collaboration.")
|
|
.color(Color::Muted)
|
|
.size(LabelSize::Small),
|
|
),
|
|
),
|
|
)
|
|
}
|
|
}
|
|
}
|