ZIm/gpui/src/platform/mac/shaders/shaders.metal

252 lines
8.5 KiB
Metal

#include <metal_stdlib>
#include "shaders.h"
using namespace metal;
float4 coloru_to_colorf(uchar4 coloru) {
return float4(coloru) / float4(0xff, 0xff, 0xff, 0xff);
}
float4 to_device_position(float2 pixel_position, float2 viewport_size) {
return float4(pixel_position / viewport_size * float2(2., -2.) + float2(-1., 1.), 0., 1.);
}
// A standard gaussian function, used for weighting samples
float gaussian(float x, float sigma) {
return exp(-(x * x) / (2. * sigma * sigma)) / (sqrt(2. * M_PI_F) * sigma);
}
// This approximates the error function, needed for the gaussian integral
float2 erf(float2 x) {
float2 s = sign(x);
float2 a = abs(x);
x = 1. + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
x *= x;
return s - s / (x * x);
}
float blur_along_x(float x, float y, float sigma, float corner, float2 halfSize) {
float delta = min(halfSize.y - corner - abs(y), 0.);
float curved = halfSize.x - corner + sqrt(max(0., corner * corner - delta * delta));
float2 integral = 0.5 + 0.5 * erf((x + float2(-curved, curved)) * (sqrt(0.5) / sigma));
return integral.y - integral.x;
}
struct QuadFragmentInput {
float4 position [[position]];
vector_float2 origin;
vector_float2 size;
vector_uchar4 background_color;
float border_top;
float border_right;
float border_bottom;
float border_left;
vector_uchar4 border_color;
float corner_radius;
};
vertex QuadFragmentInput quad_vertex(
uint unit_vertex_id [[vertex_id]],
uint quad_id [[instance_id]],
constant float2 *unit_vertices [[buffer(GPUIQuadInputIndexVertices)]],
constant GPUIQuad *quads [[buffer(GPUIQuadInputIndexQuads)]],
constant GPUIUniforms *uniforms [[buffer(GPUIQuadInputIndexUniforms)]]
) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
GPUIQuad quad = quads[quad_id];
float2 position = unit_vertex * quad.size + quad.origin;
float4 device_position = to_device_position(position, uniforms->viewport_size);
return QuadFragmentInput {
device_position,
quad.origin,
quad.size,
quad.background_color,
quad.border_top,
quad.border_right,
quad.border_bottom,
quad.border_left,
quad.border_color,
quad.corner_radius,
};
}
fragment float4 quad_fragment(
QuadFragmentInput input [[stage_in]]
) {
float2 half_size = input.size / 2.;
float2 center = input.origin + half_size;
float2 center_to_point = input.position.xy - center;
float2 edge_to_point = abs(center_to_point) - half_size;
float2 rounded_edge_to_point = abs(center_to_point) - half_size + input.corner_radius;
float distance = length(max(0., rounded_edge_to_point)) + min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) - input.corner_radius;
float vertical_border = center_to_point.x <= 0. ? input.border_left : input.border_right;
float horizontal_border = center_to_point.y <= 0. ? input.border_top : input.border_bottom;
float2 inset_size = half_size - input.corner_radius - float2(vertical_border, horizontal_border);
float2 point_to_inset_corner = abs(center_to_point) - inset_size;
float border_width;
if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
border_width = 0.;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
float4 color;
if (border_width == 0.) {
color = coloru_to_colorf(input.background_color);
} else {
float inset_distance = distance + border_width;
color = mix(
coloru_to_colorf(input.border_color),
coloru_to_colorf(input.background_color),
saturate(0.5 - inset_distance)
);
}
float4 coverage = float4(1., 1., 1., saturate(0.5 - distance));
return coverage * color;
}
struct ShadowFragmentInput {
float4 position [[position]];
vector_float2 origin;
vector_float2 size;
float corner_radius;
float sigma;
vector_uchar4 color;
};
vertex ShadowFragmentInput shadow_vertex(
uint unit_vertex_id [[vertex_id]],
uint shadow_id [[instance_id]],
constant float2 *unit_vertices [[buffer(GPUIShadowInputIndexVertices)]],
constant GPUIShadow *shadows [[buffer(GPUIShadowInputIndexShadows)]],
constant GPUIUniforms *uniforms [[buffer(GPUIShadowInputIndexUniforms)]]
) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
GPUIShadow shadow = shadows[shadow_id];
float margin = 3. * shadow.sigma;
float2 position = unit_vertex * (shadow.size + 2. * margin) + shadow.origin - margin;
float4 device_position = to_device_position(position, uniforms->viewport_size);
return ShadowFragmentInput {
device_position,
shadow.origin,
shadow.size,
shadow.corner_radius,
shadow.sigma,
shadow.color,
};
}
fragment float4 shadow_fragment(
ShadowFragmentInput input [[stage_in]]
) {
float sigma = input.sigma;
float corner_radius = input.corner_radius;
float2 half_size = input.size / 2.;
float2 center = input.origin + half_size;
float2 point = input.position.xy - center;
// The signal is only non-zero in a limited range, so don't waste samples
float low = point.y - half_size.y;
float high = point.y + half_size.y;
float start = clamp(-3. * sigma, low, high);
float end = clamp(3. * sigma, low, high);
// Accumulate samples (we can get away with surprisingly few samples)
float step = (end - start) / 4.;
float y = start + step * 0.5;
float alpha = 0.;
for (int i = 0; i < 4; i++) {
alpha += blur_along_x(point.x, point.y - y, sigma, corner_radius, half_size) * gaussian(y, sigma) * step;
y += step;
}
return float4(1., 1., 1., alpha) * coloru_to_colorf(input.color);
}
struct SpriteFragmentInput {
float4 position [[position]];
float2 atlas_position;
float4 color [[flat]];
uchar compute_winding [[flat]];
};
vertex SpriteFragmentInput sprite_vertex(
uint unit_vertex_id [[vertex_id]],
uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(GPUISpriteVertexInputIndexVertices)]],
constant GPUISprite *sprites [[buffer(GPUISpriteVertexInputIndexSprites)]],
constant float2 *viewport_size [[buffer(GPUISpriteVertexInputIndexViewportSize)]],
constant float2 *atlas_size [[buffer(GPUISpriteVertexInputIndexAtlasSize)]]
) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
GPUISprite sprite = sprites[sprite_id];
float2 position = unit_vertex * sprite.size + sprite.origin;
float4 device_position = to_device_position(position, *viewport_size);
float2 atlas_position = (unit_vertex * sprite.size + sprite.atlas_origin) / *atlas_size;
return SpriteFragmentInput {
device_position,
atlas_position,
coloru_to_colorf(sprite.color),
sprite.compute_winding
};
}
#define MAX_WINDINGS 32.
fragment float4 sprite_fragment(
SpriteFragmentInput input [[stage_in]],
texture2d<float> atlas [[ texture(GPUISpriteFragmentInputIndexAtlas) ]]
) {
constexpr sampler atlas_sampler(mag_filter::linear, min_filter::linear);
float4 color = input.color;
float4 sample = atlas.sample(atlas_sampler, input.atlas_position);
float mask;
if (input.compute_winding) {
mask = 1. - abs(1. - fmod(sample.r * MAX_WINDINGS, 2.));
} else {
mask = sample.a;
}
color.a *= mask;
return color;
}
struct PathWindingFragmentInput {
float4 position [[position]];
float2 st_position;
};
vertex PathWindingFragmentInput path_winding_vertex(
uint vertex_id [[vertex_id]],
constant GPUIPathVertex *vertices [[buffer(GPUIPathWindingVertexInputIndexVertices)]],
constant float2 *atlas_size [[buffer(GPUIPathWindingVertexInputIndexAtlasSize)]]
) {
GPUIPathVertex v = vertices[vertex_id];
float4 device_position = to_device_position(v.xy_position, *atlas_size);
return PathWindingFragmentInput {
device_position,
v.st_position,
};
}
fragment float4 path_winding_fragment(
PathWindingFragmentInput input [[stage_in]]
) {
float2 dx = dfdx(input.st_position);
float2 dy = dfdy(input.st_position);
float2 gradient = float2(
(2. * input.st_position.x) * dx.x - dx.y,
(2. * input.st_position.x) * dy.x - dy.y
);
float f = (input.st_position.x * input.st_position.x) - input.st_position.y;
float distance = f / length(gradient);
float alpha = saturate(0.5 - distance) / MAX_WINDINGS;
return float4(alpha, 0., 0., 1.);
}