
Bubbles up rate limit information so that we can retry after a certain duration if needed higher up in the stack. Also caps the number of concurrent evals running at once to also help. Release Notes: - N/A
923 lines
33 KiB
Rust
923 lines
33 KiB
Rust
use anyhow::{Context as _, Result, anyhow};
|
|
use collections::BTreeMap;
|
|
use credentials_provider::CredentialsProvider;
|
|
use editor::{Editor, EditorElement, EditorStyle};
|
|
use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
|
|
use google_ai::{
|
|
FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
|
|
ThinkingConfig, UsageMetadata,
|
|
};
|
|
use gpui::{
|
|
AnyView, App, AsyncApp, Context, Entity, FontStyle, Subscription, Task, TextStyle, WhiteSpace,
|
|
};
|
|
use http_client::HttpClient;
|
|
use language_model::{
|
|
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
|
LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
|
|
LanguageModelToolUseId, MessageContent, StopReason,
|
|
};
|
|
use language_model::{
|
|
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
|
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
|
|
LanguageModelRequest, RateLimiter, Role,
|
|
};
|
|
use schemars::JsonSchema;
|
|
use serde::{Deserialize, Serialize};
|
|
use settings::{Settings, SettingsStore};
|
|
use std::pin::Pin;
|
|
use std::sync::{
|
|
Arc,
|
|
atomic::{self, AtomicU64},
|
|
};
|
|
use strum::IntoEnumIterator;
|
|
use theme::ThemeSettings;
|
|
use ui::{Icon, IconName, List, Tooltip, prelude::*};
|
|
use util::ResultExt;
|
|
|
|
use crate::AllLanguageModelSettings;
|
|
use crate::ui::InstructionListItem;
|
|
|
|
const PROVIDER_ID: &str = "google";
|
|
const PROVIDER_NAME: &str = "Google AI";
|
|
|
|
#[derive(Default, Clone, Debug, PartialEq)]
|
|
pub struct GoogleSettings {
|
|
pub api_url: String,
|
|
pub available_models: Vec<AvailableModel>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
#[serde(tag = "type", rename_all = "lowercase")]
|
|
pub enum ModelMode {
|
|
#[default]
|
|
Default,
|
|
Thinking {
|
|
/// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
|
|
budget_tokens: Option<u32>,
|
|
},
|
|
}
|
|
|
|
impl From<ModelMode> for GoogleModelMode {
|
|
fn from(value: ModelMode) -> Self {
|
|
match value {
|
|
ModelMode::Default => GoogleModelMode::Default,
|
|
ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<GoogleModelMode> for ModelMode {
|
|
fn from(value: GoogleModelMode) -> Self {
|
|
match value {
|
|
GoogleModelMode::Default => ModelMode::Default,
|
|
GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
pub struct AvailableModel {
|
|
name: String,
|
|
display_name: Option<String>,
|
|
max_tokens: usize,
|
|
mode: Option<ModelMode>,
|
|
}
|
|
|
|
pub struct GoogleLanguageModelProvider {
|
|
http_client: Arc<dyn HttpClient>,
|
|
state: gpui::Entity<State>,
|
|
}
|
|
|
|
pub struct State {
|
|
api_key: Option<String>,
|
|
api_key_from_env: bool,
|
|
_subscription: Subscription,
|
|
}
|
|
|
|
const GOOGLE_AI_API_KEY_VAR: &str = "GOOGLE_AI_API_KEY";
|
|
|
|
impl State {
|
|
fn is_authenticated(&self) -> bool {
|
|
self.api_key.is_some()
|
|
}
|
|
|
|
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
|
|
let credentials_provider = <dyn CredentialsProvider>::global(cx);
|
|
let api_url = AllLanguageModelSettings::get_global(cx)
|
|
.google
|
|
.api_url
|
|
.clone();
|
|
cx.spawn(async move |this, cx| {
|
|
credentials_provider
|
|
.delete_credentials(&api_url, &cx)
|
|
.await
|
|
.log_err();
|
|
this.update(cx, |this, cx| {
|
|
this.api_key = None;
|
|
this.api_key_from_env = false;
|
|
cx.notify();
|
|
})
|
|
})
|
|
}
|
|
|
|
fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
|
|
let credentials_provider = <dyn CredentialsProvider>::global(cx);
|
|
let api_url = AllLanguageModelSettings::get_global(cx)
|
|
.google
|
|
.api_url
|
|
.clone();
|
|
cx.spawn(async move |this, cx| {
|
|
credentials_provider
|
|
.write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
|
|
.await?;
|
|
this.update(cx, |this, cx| {
|
|
this.api_key = Some(api_key);
|
|
cx.notify();
|
|
})
|
|
})
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
|
|
if self.is_authenticated() {
|
|
return Task::ready(Ok(()));
|
|
}
|
|
|
|
let credentials_provider = <dyn CredentialsProvider>::global(cx);
|
|
let api_url = AllLanguageModelSettings::get_global(cx)
|
|
.google
|
|
.api_url
|
|
.clone();
|
|
|
|
cx.spawn(async move |this, cx| {
|
|
let (api_key, from_env) = if let Ok(api_key) = std::env::var(GOOGLE_AI_API_KEY_VAR) {
|
|
(api_key, true)
|
|
} else {
|
|
let (_, api_key) = credentials_provider
|
|
.read_credentials(&api_url, &cx)
|
|
.await?
|
|
.ok_or(AuthenticateError::CredentialsNotFound)?;
|
|
(
|
|
String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
|
|
false,
|
|
)
|
|
};
|
|
|
|
this.update(cx, |this, cx| {
|
|
this.api_key = Some(api_key);
|
|
this.api_key_from_env = from_env;
|
|
cx.notify();
|
|
})?;
|
|
|
|
Ok(())
|
|
})
|
|
}
|
|
}
|
|
|
|
impl GoogleLanguageModelProvider {
|
|
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
|
|
let state = cx.new(|cx| State {
|
|
api_key: None,
|
|
api_key_from_env: false,
|
|
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
|
|
cx.notify();
|
|
}),
|
|
});
|
|
|
|
Self { http_client, state }
|
|
}
|
|
|
|
fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
|
|
Arc::new(GoogleLanguageModel {
|
|
id: LanguageModelId::from(model.id().to_string()),
|
|
model,
|
|
state: self.state.clone(),
|
|
http_client: self.http_client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProviderState for GoogleLanguageModelProvider {
|
|
type ObservableEntity = State;
|
|
|
|
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
|
|
Some(self.state.clone())
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProvider for GoogleLanguageModelProvider {
|
|
fn id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn icon(&self) -> IconName {
|
|
IconName::AiGoogle
|
|
}
|
|
|
|
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
Some(self.create_language_model(google_ai::Model::default()))
|
|
}
|
|
|
|
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
Some(self.create_language_model(google_ai::Model::default_fast()))
|
|
}
|
|
|
|
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
|
|
let mut models = BTreeMap::default();
|
|
|
|
// Add base models from google_ai::Model::iter()
|
|
for model in google_ai::Model::iter() {
|
|
if !matches!(model, google_ai::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), model);
|
|
}
|
|
}
|
|
|
|
// Override with available models from settings
|
|
for model in &AllLanguageModelSettings::get_global(cx)
|
|
.google
|
|
.available_models
|
|
{
|
|
models.insert(
|
|
model.name.clone(),
|
|
google_ai::Model::Custom {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
mode: model.mode.unwrap_or_default().into(),
|
|
},
|
|
);
|
|
}
|
|
|
|
models
|
|
.into_values()
|
|
.map(|model| {
|
|
Arc::new(GoogleLanguageModel {
|
|
id: LanguageModelId::from(model.id().to_string()),
|
|
model,
|
|
state: self.state.clone(),
|
|
http_client: self.http_client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
}) as Arc<dyn LanguageModel>
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn is_authenticated(&self, cx: &App) -> bool {
|
|
self.state.read(cx).is_authenticated()
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
|
|
self.state.update(cx, |state, cx| state.authenticate(cx))
|
|
}
|
|
|
|
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
|
|
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
|
|
.into()
|
|
}
|
|
|
|
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
|
|
self.state.update(cx, |state, cx| state.reset_api_key(cx))
|
|
}
|
|
}
|
|
|
|
pub struct GoogleLanguageModel {
|
|
id: LanguageModelId,
|
|
model: google_ai::Model,
|
|
state: gpui::Entity<State>,
|
|
http_client: Arc<dyn HttpClient>,
|
|
request_limiter: RateLimiter,
|
|
}
|
|
|
|
impl GoogleLanguageModel {
|
|
fn stream_completion(
|
|
&self,
|
|
request: google_ai::GenerateContentRequest,
|
|
cx: &AsyncApp,
|
|
) -> BoxFuture<
|
|
'static,
|
|
Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
|
|
> {
|
|
let http_client = self.http_client.clone();
|
|
|
|
let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).google;
|
|
(state.api_key.clone(), settings.api_url.clone())
|
|
}) else {
|
|
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
|
|
};
|
|
|
|
async move {
|
|
let api_key = api_key.context("Missing Google API key")?;
|
|
let request = google_ai::stream_generate_content(
|
|
http_client.as_ref(),
|
|
&api_url,
|
|
&api_key,
|
|
request,
|
|
);
|
|
request.await.context("failed to stream completion")
|
|
}
|
|
.boxed()
|
|
}
|
|
}
|
|
|
|
impl LanguageModel for GoogleLanguageModel {
|
|
fn id(&self) -> LanguageModelId {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelName {
|
|
LanguageModelName::from(self.model.display_name().to_string())
|
|
}
|
|
|
|
fn provider_id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn provider_name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn supports_tools(&self) -> bool {
|
|
true
|
|
}
|
|
|
|
fn supports_images(&self) -> bool {
|
|
true
|
|
}
|
|
|
|
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
|
|
match choice {
|
|
LanguageModelToolChoice::Auto
|
|
| LanguageModelToolChoice::Any
|
|
| LanguageModelToolChoice::None => true,
|
|
}
|
|
}
|
|
|
|
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
|
|
LanguageModelToolSchemaFormat::JsonSchemaSubset
|
|
}
|
|
|
|
fn telemetry_id(&self) -> String {
|
|
format!("google/{}", self.model.request_id())
|
|
}
|
|
|
|
fn max_token_count(&self) -> usize {
|
|
self.model.max_token_count()
|
|
}
|
|
|
|
fn count_tokens(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &App,
|
|
) -> BoxFuture<'static, Result<usize>> {
|
|
let model_id = self.model.request_id().to_string();
|
|
let request = into_google(request, model_id.clone(), self.model.mode());
|
|
let http_client = self.http_client.clone();
|
|
let api_key = self.state.read(cx).api_key.clone();
|
|
|
|
let settings = &AllLanguageModelSettings::get_global(cx).google;
|
|
let api_url = settings.api_url.clone();
|
|
|
|
async move {
|
|
let api_key = api_key.context("Missing Google API key")?;
|
|
let response = google_ai::count_tokens(
|
|
http_client.as_ref(),
|
|
&api_url,
|
|
&api_key,
|
|
google_ai::CountTokensRequest {
|
|
generate_content_request: request,
|
|
},
|
|
)
|
|
.await?;
|
|
Ok(response.total_tokens)
|
|
}
|
|
.boxed()
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AsyncApp,
|
|
) -> BoxFuture<
|
|
'static,
|
|
Result<
|
|
futures::stream::BoxStream<
|
|
'static,
|
|
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
|
|
>,
|
|
LanguageModelCompletionError,
|
|
>,
|
|
> {
|
|
let request = into_google(
|
|
request,
|
|
self.model.request_id().to_string(),
|
|
self.model.mode(),
|
|
);
|
|
let request = self.stream_completion(request, cx);
|
|
let future = self.request_limiter.stream(async move {
|
|
let response = request
|
|
.await
|
|
.map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
|
|
Ok(GoogleEventMapper::new().map_stream(response))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
}
|
|
|
|
pub fn into_google(
|
|
mut request: LanguageModelRequest,
|
|
model_id: String,
|
|
mode: GoogleModelMode,
|
|
) -> google_ai::GenerateContentRequest {
|
|
fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
|
|
content
|
|
.into_iter()
|
|
.flat_map(|content| match content {
|
|
language_model::MessageContent::Text(text)
|
|
| language_model::MessageContent::Thinking { text, .. } => {
|
|
if !text.is_empty() {
|
|
vec![Part::TextPart(google_ai::TextPart { text })]
|
|
} else {
|
|
vec![]
|
|
}
|
|
}
|
|
language_model::MessageContent::RedactedThinking(_) => vec![],
|
|
language_model::MessageContent::Image(image) => {
|
|
vec![Part::InlineDataPart(google_ai::InlineDataPart {
|
|
inline_data: google_ai::GenerativeContentBlob {
|
|
mime_type: "image/png".to_string(),
|
|
data: image.source.to_string(),
|
|
},
|
|
})]
|
|
}
|
|
language_model::MessageContent::ToolUse(tool_use) => {
|
|
vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
|
|
function_call: google_ai::FunctionCall {
|
|
name: tool_use.name.to_string(),
|
|
args: tool_use.input,
|
|
},
|
|
})]
|
|
}
|
|
language_model::MessageContent::ToolResult(tool_result) => {
|
|
match tool_result.content {
|
|
language_model::LanguageModelToolResultContent::Text(text) => {
|
|
vec![Part::FunctionResponsePart(
|
|
google_ai::FunctionResponsePart {
|
|
function_response: google_ai::FunctionResponse {
|
|
name: tool_result.tool_name.to_string(),
|
|
// The API expects a valid JSON object
|
|
response: serde_json::json!({
|
|
"output": text
|
|
}),
|
|
},
|
|
},
|
|
)]
|
|
}
|
|
language_model::LanguageModelToolResultContent::Image(image) => {
|
|
vec![
|
|
Part::FunctionResponsePart(google_ai::FunctionResponsePart {
|
|
function_response: google_ai::FunctionResponse {
|
|
name: tool_result.tool_name.to_string(),
|
|
// The API expects a valid JSON object
|
|
response: serde_json::json!({
|
|
"output": "Tool responded with an image"
|
|
}),
|
|
},
|
|
}),
|
|
Part::InlineDataPart(google_ai::InlineDataPart {
|
|
inline_data: google_ai::GenerativeContentBlob {
|
|
mime_type: "image/png".to_string(),
|
|
data: image.source.to_string(),
|
|
},
|
|
}),
|
|
]
|
|
}
|
|
}
|
|
}
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
let system_instructions = if request
|
|
.messages
|
|
.first()
|
|
.map_or(false, |msg| matches!(msg.role, Role::System))
|
|
{
|
|
let message = request.messages.remove(0);
|
|
Some(SystemInstruction {
|
|
parts: map_content(message.content),
|
|
})
|
|
} else {
|
|
None
|
|
};
|
|
|
|
google_ai::GenerateContentRequest {
|
|
model: google_ai::ModelName { model_id },
|
|
system_instruction: system_instructions,
|
|
contents: request
|
|
.messages
|
|
.into_iter()
|
|
.filter_map(|message| {
|
|
let parts = map_content(message.content);
|
|
if parts.is_empty() {
|
|
None
|
|
} else {
|
|
Some(google_ai::Content {
|
|
parts,
|
|
role: match message.role {
|
|
Role::User => google_ai::Role::User,
|
|
Role::Assistant => google_ai::Role::Model,
|
|
Role::System => google_ai::Role::User, // Google AI doesn't have a system role
|
|
},
|
|
})
|
|
}
|
|
})
|
|
.collect(),
|
|
generation_config: Some(google_ai::GenerationConfig {
|
|
candidate_count: Some(1),
|
|
stop_sequences: Some(request.stop),
|
|
max_output_tokens: None,
|
|
temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
|
|
thinking_config: match mode {
|
|
GoogleModelMode::Thinking { budget_tokens } => {
|
|
budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
|
|
}
|
|
GoogleModelMode::Default => None,
|
|
},
|
|
top_p: None,
|
|
top_k: None,
|
|
}),
|
|
safety_settings: None,
|
|
tools: (request.tools.len() > 0).then(|| {
|
|
vec![google_ai::Tool {
|
|
function_declarations: request
|
|
.tools
|
|
.into_iter()
|
|
.map(|tool| FunctionDeclaration {
|
|
name: tool.name,
|
|
description: tool.description,
|
|
parameters: tool.input_schema,
|
|
})
|
|
.collect(),
|
|
}]
|
|
}),
|
|
tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
|
|
function_calling_config: google_ai::FunctionCallingConfig {
|
|
mode: match choice {
|
|
LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
|
|
LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
|
|
LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
|
|
},
|
|
allowed_function_names: None,
|
|
},
|
|
}),
|
|
}
|
|
}
|
|
|
|
pub struct GoogleEventMapper {
|
|
usage: UsageMetadata,
|
|
stop_reason: StopReason,
|
|
}
|
|
|
|
impl GoogleEventMapper {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
usage: UsageMetadata::default(),
|
|
stop_reason: StopReason::EndTurn,
|
|
}
|
|
}
|
|
|
|
pub fn map_stream(
|
|
mut self,
|
|
events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
|
|
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
|
|
{
|
|
events
|
|
.map(Some)
|
|
.chain(futures::stream::once(async { None }))
|
|
.flat_map(move |event| {
|
|
futures::stream::iter(match event {
|
|
Some(Ok(event)) => self.map_event(event),
|
|
Some(Err(error)) => {
|
|
vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
|
|
}
|
|
None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
|
|
})
|
|
})
|
|
}
|
|
|
|
pub fn map_event(
|
|
&mut self,
|
|
event: GenerateContentResponse,
|
|
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
|
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
|
|
|
|
let mut events: Vec<_> = Vec::new();
|
|
let mut wants_to_use_tool = false;
|
|
if let Some(usage_metadata) = event.usage_metadata {
|
|
update_usage(&mut self.usage, &usage_metadata);
|
|
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
|
|
convert_usage(&self.usage),
|
|
)))
|
|
}
|
|
if let Some(candidates) = event.candidates {
|
|
for candidate in candidates {
|
|
if let Some(finish_reason) = candidate.finish_reason.as_deref() {
|
|
self.stop_reason = match finish_reason {
|
|
"STOP" => StopReason::EndTurn,
|
|
"MAX_TOKENS" => StopReason::MaxTokens,
|
|
_ => {
|
|
log::error!("Unexpected google finish_reason: {finish_reason}");
|
|
StopReason::EndTurn
|
|
}
|
|
};
|
|
}
|
|
candidate
|
|
.content
|
|
.parts
|
|
.into_iter()
|
|
.for_each(|part| match part {
|
|
Part::TextPart(text_part) => {
|
|
events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
|
|
}
|
|
Part::InlineDataPart(_) => {}
|
|
Part::FunctionCallPart(function_call_part) => {
|
|
wants_to_use_tool = true;
|
|
let name: Arc<str> = function_call_part.function_call.name.into();
|
|
let next_tool_id =
|
|
TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
|
|
let id: LanguageModelToolUseId =
|
|
format!("{}-{}", name, next_tool_id).into();
|
|
|
|
events.push(Ok(LanguageModelCompletionEvent::ToolUse(
|
|
LanguageModelToolUse {
|
|
id,
|
|
name,
|
|
is_input_complete: true,
|
|
raw_input: function_call_part.function_call.args.to_string(),
|
|
input: function_call_part.function_call.args,
|
|
},
|
|
)));
|
|
}
|
|
Part::FunctionResponsePart(_) => {}
|
|
Part::ThoughtPart(_) => {}
|
|
});
|
|
}
|
|
}
|
|
|
|
// Even when Gemini wants to use a Tool, the API
|
|
// responds with `finish_reason: STOP`
|
|
if wants_to_use_tool {
|
|
self.stop_reason = StopReason::ToolUse;
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
|
}
|
|
events
|
|
}
|
|
}
|
|
|
|
pub fn count_google_tokens(
|
|
request: LanguageModelRequest,
|
|
cx: &App,
|
|
) -> BoxFuture<'static, Result<usize>> {
|
|
// We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
|
|
// So we have to use tokenizer from tiktoken_rs to count tokens.
|
|
cx.background_spawn(async move {
|
|
let messages = request
|
|
.messages
|
|
.into_iter()
|
|
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
|
role: match message.role {
|
|
Role::User => "user".into(),
|
|
Role::Assistant => "assistant".into(),
|
|
Role::System => "system".into(),
|
|
},
|
|
content: Some(message.string_contents()),
|
|
name: None,
|
|
function_call: None,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Tiktoken doesn't yet support these models, so we manually use the
|
|
// same tokenizer as GPT-4.
|
|
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
|
})
|
|
.boxed()
|
|
}
|
|
|
|
fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
|
|
if let Some(prompt_token_count) = new.prompt_token_count {
|
|
usage.prompt_token_count = Some(prompt_token_count);
|
|
}
|
|
if let Some(cached_content_token_count) = new.cached_content_token_count {
|
|
usage.cached_content_token_count = Some(cached_content_token_count);
|
|
}
|
|
if let Some(candidates_token_count) = new.candidates_token_count {
|
|
usage.candidates_token_count = Some(candidates_token_count);
|
|
}
|
|
if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
|
|
usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
|
|
}
|
|
if let Some(thoughts_token_count) = new.thoughts_token_count {
|
|
usage.thoughts_token_count = Some(thoughts_token_count);
|
|
}
|
|
if let Some(total_token_count) = new.total_token_count {
|
|
usage.total_token_count = Some(total_token_count);
|
|
}
|
|
}
|
|
|
|
fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
|
|
let prompt_tokens = usage.prompt_token_count.unwrap_or(0) as u32;
|
|
let cached_tokens = usage.cached_content_token_count.unwrap_or(0) as u32;
|
|
let input_tokens = prompt_tokens - cached_tokens;
|
|
let output_tokens = usage.candidates_token_count.unwrap_or(0) as u32;
|
|
|
|
language_model::TokenUsage {
|
|
input_tokens,
|
|
output_tokens,
|
|
cache_read_input_tokens: cached_tokens,
|
|
cache_creation_input_tokens: 0,
|
|
}
|
|
}
|
|
|
|
struct ConfigurationView {
|
|
api_key_editor: Entity<Editor>,
|
|
state: gpui::Entity<State>,
|
|
load_credentials_task: Option<Task<()>>,
|
|
}
|
|
|
|
impl ConfigurationView {
|
|
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
|
|
cx.observe(&state, |_, _, cx| {
|
|
cx.notify();
|
|
})
|
|
.detach();
|
|
|
|
let load_credentials_task = Some(cx.spawn_in(window, {
|
|
let state = state.clone();
|
|
async move |this, cx| {
|
|
if let Some(task) = state
|
|
.update(cx, |state, cx| state.authenticate(cx))
|
|
.log_err()
|
|
{
|
|
// We don't log an error, because "not signed in" is also an error.
|
|
let _ = task.await;
|
|
}
|
|
this.update(cx, |this, cx| {
|
|
this.load_credentials_task = None;
|
|
cx.notify();
|
|
})
|
|
.log_err();
|
|
}
|
|
}));
|
|
|
|
Self {
|
|
api_key_editor: cx.new(|cx| {
|
|
let mut editor = Editor::single_line(window, cx);
|
|
editor.set_placeholder_text("AIzaSy...", cx);
|
|
editor
|
|
}),
|
|
state,
|
|
load_credentials_task,
|
|
}
|
|
}
|
|
|
|
fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
|
|
let api_key = self.api_key_editor.read(cx).text(cx);
|
|
if api_key.is_empty() {
|
|
return;
|
|
}
|
|
|
|
let state = self.state.clone();
|
|
cx.spawn_in(window, async move |_, cx| {
|
|
state
|
|
.update(cx, |state, cx| state.set_api_key(api_key, cx))?
|
|
.await
|
|
})
|
|
.detach_and_log_err(cx);
|
|
|
|
cx.notify();
|
|
}
|
|
|
|
fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
|
|
self.api_key_editor
|
|
.update(cx, |editor, cx| editor.set_text("", window, cx));
|
|
|
|
let state = self.state.clone();
|
|
cx.spawn_in(window, async move |_, cx| {
|
|
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
|
|
})
|
|
.detach_and_log_err(cx);
|
|
|
|
cx.notify();
|
|
}
|
|
|
|
fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
|
|
let settings = ThemeSettings::get_global(cx);
|
|
let text_style = TextStyle {
|
|
color: cx.theme().colors().text,
|
|
font_family: settings.ui_font.family.clone(),
|
|
font_features: settings.ui_font.features.clone(),
|
|
font_fallbacks: settings.ui_font.fallbacks.clone(),
|
|
font_size: rems(0.875).into(),
|
|
font_weight: settings.ui_font.weight,
|
|
font_style: FontStyle::Normal,
|
|
line_height: relative(1.3),
|
|
white_space: WhiteSpace::Normal,
|
|
..Default::default()
|
|
};
|
|
EditorElement::new(
|
|
&self.api_key_editor,
|
|
EditorStyle {
|
|
background: cx.theme().colors().editor_background,
|
|
local_player: cx.theme().players().local(),
|
|
text: text_style,
|
|
..Default::default()
|
|
},
|
|
)
|
|
}
|
|
|
|
fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
|
|
!self.state.read(cx).is_authenticated()
|
|
}
|
|
}
|
|
|
|
impl Render for ConfigurationView {
|
|
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
|
|
let env_var_set = self.state.read(cx).api_key_from_env;
|
|
|
|
if self.load_credentials_task.is_some() {
|
|
div().child(Label::new("Loading credentials...")).into_any()
|
|
} else if self.should_render_editor(cx) {
|
|
v_flex()
|
|
.size_full()
|
|
.on_action(cx.listener(Self::save_api_key))
|
|
.child(Label::new("To use Zed's assistant with Google AI, you need to add an API key. Follow these steps:"))
|
|
.child(
|
|
List::new()
|
|
.child(InstructionListItem::new(
|
|
"Create one by visiting",
|
|
Some("Google AI's console"),
|
|
Some("https://aistudio.google.com/app/apikey"),
|
|
))
|
|
.child(InstructionListItem::text_only(
|
|
"Paste your API key below and hit enter to start using the assistant",
|
|
)),
|
|
)
|
|
.child(
|
|
h_flex()
|
|
.w_full()
|
|
.my_2()
|
|
.px_2()
|
|
.py_1()
|
|
.bg(cx.theme().colors().editor_background)
|
|
.border_1()
|
|
.border_color(cx.theme().colors().border)
|
|
.rounded_sm()
|
|
.child(self.render_api_key_editor(cx)),
|
|
)
|
|
.child(
|
|
Label::new(
|
|
format!("You can also assign the {GOOGLE_AI_API_KEY_VAR} environment variable and restart Zed."),
|
|
)
|
|
.size(LabelSize::Small).color(Color::Muted),
|
|
)
|
|
.into_any()
|
|
} else {
|
|
h_flex()
|
|
.mt_1()
|
|
.p_1()
|
|
.justify_between()
|
|
.rounded_md()
|
|
.border_1()
|
|
.border_color(cx.theme().colors().border)
|
|
.bg(cx.theme().colors().background)
|
|
.child(
|
|
h_flex()
|
|
.gap_1()
|
|
.child(Icon::new(IconName::Check).color(Color::Success))
|
|
.child(Label::new(if env_var_set {
|
|
format!("API key set in {GOOGLE_AI_API_KEY_VAR} environment variable.")
|
|
} else {
|
|
"API key configured.".to_string()
|
|
})),
|
|
)
|
|
.child(
|
|
Button::new("reset-key", "Reset Key")
|
|
.label_size(LabelSize::Small)
|
|
.icon(Some(IconName::Trash))
|
|
.icon_size(IconSize::Small)
|
|
.icon_position(IconPosition::Start)
|
|
.disabled(env_var_set)
|
|
.when(env_var_set, |this| {
|
|
this.tooltip(Tooltip::text(format!("To reset your API key, unset the {GOOGLE_AI_API_KEY_VAR} environment variable.")))
|
|
})
|
|
.on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
|
|
)
|
|
.into_any()
|
|
}
|
|
}
|
|
}
|