ZIm/crates/language_models/src/provider/google.rs
Ben Brandt e4bd115a63
More resilient eval (#32257)
Bubbles up rate limit information so that we can retry after a certain
duration if needed higher up in the stack.

Also caps the number of concurrent evals running at once to also help.

Release Notes:

- N/A
2025-06-09 18:07:22 +00:00

923 lines
33 KiB
Rust

use anyhow::{Context as _, Result, anyhow};
use collections::BTreeMap;
use credentials_provider::CredentialsProvider;
use editor::{Editor, EditorElement, EditorStyle};
use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
use google_ai::{
FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
ThinkingConfig, UsageMetadata,
};
use gpui::{
AnyView, App, AsyncApp, Context, Entity, FontStyle, Subscription, Task, TextStyle, WhiteSpace,
};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
LanguageModelToolUseId, MessageContent, StopReason,
};
use language_model::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, RateLimiter, Role,
};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::pin::Pin;
use std::sync::{
Arc,
atomic::{self, AtomicU64},
};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::{Icon, IconName, List, Tooltip, prelude::*};
use util::ResultExt;
use crate::AllLanguageModelSettings;
use crate::ui::InstructionListItem;
const PROVIDER_ID: &str = "google";
const PROVIDER_NAME: &str = "Google AI";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct GoogleSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(tag = "type", rename_all = "lowercase")]
pub enum ModelMode {
#[default]
Default,
Thinking {
/// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
budget_tokens: Option<u32>,
},
}
impl From<ModelMode> for GoogleModelMode {
fn from(value: ModelMode) -> Self {
match value {
ModelMode::Default => GoogleModelMode::Default,
ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
}
}
}
impl From<GoogleModelMode> for ModelMode {
fn from(value: GoogleModelMode) -> Self {
match value {
GoogleModelMode::Default => ModelMode::Default,
GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
}
}
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
name: String,
display_name: Option<String>,
max_tokens: usize,
mode: Option<ModelMode>,
}
pub struct GoogleLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
api_key: Option<String>,
api_key_from_env: bool,
_subscription: Subscription,
}
const GOOGLE_AI_API_KEY_VAR: &str = "GOOGLE_AI_API_KEY";
impl State {
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.google
.api_url
.clone();
cx.spawn(async move |this, cx| {
credentials_provider
.delete_credentials(&api_url, &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = None;
this.api_key_from_env = false;
cx.notify();
})
})
}
fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.google
.api_url
.clone();
cx.spawn(async move |this, cx| {
credentials_provider
.write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
.await?;
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
if self.is_authenticated() {
return Task::ready(Ok(()));
}
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.google
.api_url
.clone();
cx.spawn(async move |this, cx| {
let (api_key, from_env) = if let Ok(api_key) = std::env::var(GOOGLE_AI_API_KEY_VAR) {
(api_key, true)
} else {
let (_, api_key) = credentials_provider
.read_credentials(&api_url, &cx)
.await?
.ok_or(AuthenticateError::CredentialsNotFound)?;
(
String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
false,
)
};
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
this.api_key_from_env = from_env;
cx.notify();
})?;
Ok(())
})
}
}
impl GoogleLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let state = cx.new(|cx| State {
api_key: None,
api_key_from_env: false,
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
cx.notify();
}),
});
Self { http_client, state }
}
fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
Arc::new(GoogleLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
})
}
}
impl LanguageModelProviderState for GoogleLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for GoogleLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiGoogle
}
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(google_ai::Model::default()))
}
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(google_ai::Model::default_fast()))
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
// Add base models from google_ai::Model::iter()
for model in google_ai::Model::iter() {
if !matches!(model, google_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &AllLanguageModelSettings::get_global(cx)
.google
.available_models
{
models.insert(
model.name.clone(),
google_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
mode: model.mode.unwrap_or_default().into(),
},
);
}
models
.into_values()
.map(|model| {
Arc::new(GoogleLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
.into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.reset_api_key(cx))
}
}
pub struct GoogleLanguageModel {
id: LanguageModelId,
model: google_ai::Model,
state: gpui::Entity<State>,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl GoogleLanguageModel {
fn stream_completion(
&self,
request: google_ai::GenerateContentRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
> {
let http_client = self.http_client.clone();
let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).google;
(state.api_key.clone(), settings.api_url.clone())
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let api_key = api_key.context("Missing Google API key")?;
let request = google_ai::stream_generate_content(
http_client.as_ref(),
&api_url,
&api_key,
request,
);
request.await.context("failed to stream completion")
}
.boxed()
}
}
impl LanguageModel for GoogleLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn supports_tools(&self) -> bool {
true
}
fn supports_images(&self) -> bool {
true
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto
| LanguageModelToolChoice::Any
| LanguageModelToolChoice::None => true,
}
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
LanguageModelToolSchemaFormat::JsonSchemaSubset
}
fn telemetry_id(&self) -> String {
format!("google/{}", self.model.request_id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<usize>> {
let model_id = self.model.request_id().to_string();
let request = into_google(request, model_id.clone(), self.model.mode());
let http_client = self.http_client.clone();
let api_key = self.state.read(cx).api_key.clone();
let settings = &AllLanguageModelSettings::get_global(cx).google;
let api_url = settings.api_url.clone();
async move {
let api_key = api_key.context("Missing Google API key")?;
let response = google_ai::count_tokens(
http_client.as_ref(),
&api_url,
&api_key,
google_ai::CountTokensRequest {
generate_content_request: request,
},
)
.await?;
Ok(response.total_tokens)
}
.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
futures::stream::BoxStream<
'static,
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
>,
LanguageModelCompletionError,
>,
> {
let request = into_google(
request,
self.model.request_id().to_string(),
self.model.mode(),
);
let request = self.stream_completion(request, cx);
let future = self.request_limiter.stream(async move {
let response = request
.await
.map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
Ok(GoogleEventMapper::new().map_stream(response))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
pub fn into_google(
mut request: LanguageModelRequest,
model_id: String,
mode: GoogleModelMode,
) -> google_ai::GenerateContentRequest {
fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
content
.into_iter()
.flat_map(|content| match content {
language_model::MessageContent::Text(text)
| language_model::MessageContent::Thinking { text, .. } => {
if !text.is_empty() {
vec![Part::TextPart(google_ai::TextPart { text })]
} else {
vec![]
}
}
language_model::MessageContent::RedactedThinking(_) => vec![],
language_model::MessageContent::Image(image) => {
vec![Part::InlineDataPart(google_ai::InlineDataPart {
inline_data: google_ai::GenerativeContentBlob {
mime_type: "image/png".to_string(),
data: image.source.to_string(),
},
})]
}
language_model::MessageContent::ToolUse(tool_use) => {
vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
function_call: google_ai::FunctionCall {
name: tool_use.name.to_string(),
args: tool_use.input,
},
})]
}
language_model::MessageContent::ToolResult(tool_result) => {
match tool_result.content {
language_model::LanguageModelToolResultContent::Text(text) => {
vec![Part::FunctionResponsePart(
google_ai::FunctionResponsePart {
function_response: google_ai::FunctionResponse {
name: tool_result.tool_name.to_string(),
// The API expects a valid JSON object
response: serde_json::json!({
"output": text
}),
},
},
)]
}
language_model::LanguageModelToolResultContent::Image(image) => {
vec![
Part::FunctionResponsePart(google_ai::FunctionResponsePart {
function_response: google_ai::FunctionResponse {
name: tool_result.tool_name.to_string(),
// The API expects a valid JSON object
response: serde_json::json!({
"output": "Tool responded with an image"
}),
},
}),
Part::InlineDataPart(google_ai::InlineDataPart {
inline_data: google_ai::GenerativeContentBlob {
mime_type: "image/png".to_string(),
data: image.source.to_string(),
},
}),
]
}
}
}
})
.collect()
}
let system_instructions = if request
.messages
.first()
.map_or(false, |msg| matches!(msg.role, Role::System))
{
let message = request.messages.remove(0);
Some(SystemInstruction {
parts: map_content(message.content),
})
} else {
None
};
google_ai::GenerateContentRequest {
model: google_ai::ModelName { model_id },
system_instruction: system_instructions,
contents: request
.messages
.into_iter()
.filter_map(|message| {
let parts = map_content(message.content);
if parts.is_empty() {
None
} else {
Some(google_ai::Content {
parts,
role: match message.role {
Role::User => google_ai::Role::User,
Role::Assistant => google_ai::Role::Model,
Role::System => google_ai::Role::User, // Google AI doesn't have a system role
},
})
}
})
.collect(),
generation_config: Some(google_ai::GenerationConfig {
candidate_count: Some(1),
stop_sequences: Some(request.stop),
max_output_tokens: None,
temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
thinking_config: match mode {
GoogleModelMode::Thinking { budget_tokens } => {
budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
}
GoogleModelMode::Default => None,
},
top_p: None,
top_k: None,
}),
safety_settings: None,
tools: (request.tools.len() > 0).then(|| {
vec![google_ai::Tool {
function_declarations: request
.tools
.into_iter()
.map(|tool| FunctionDeclaration {
name: tool.name,
description: tool.description,
parameters: tool.input_schema,
})
.collect(),
}]
}),
tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
function_calling_config: google_ai::FunctionCallingConfig {
mode: match choice {
LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
},
allowed_function_names: None,
},
}),
}
}
pub struct GoogleEventMapper {
usage: UsageMetadata,
stop_reason: StopReason,
}
impl GoogleEventMapper {
pub fn new() -> Self {
Self {
usage: UsageMetadata::default(),
stop_reason: StopReason::EndTurn,
}
}
pub fn map_stream(
mut self,
events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
{
events
.map(Some)
.chain(futures::stream::once(async { None }))
.flat_map(move |event| {
futures::stream::iter(match event {
Some(Ok(event)) => self.map_event(event),
Some(Err(error)) => {
vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
}
None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
})
})
}
pub fn map_event(
&mut self,
event: GenerateContentResponse,
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
let mut events: Vec<_> = Vec::new();
let mut wants_to_use_tool = false;
if let Some(usage_metadata) = event.usage_metadata {
update_usage(&mut self.usage, &usage_metadata);
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
convert_usage(&self.usage),
)))
}
if let Some(candidates) = event.candidates {
for candidate in candidates {
if let Some(finish_reason) = candidate.finish_reason.as_deref() {
self.stop_reason = match finish_reason {
"STOP" => StopReason::EndTurn,
"MAX_TOKENS" => StopReason::MaxTokens,
_ => {
log::error!("Unexpected google finish_reason: {finish_reason}");
StopReason::EndTurn
}
};
}
candidate
.content
.parts
.into_iter()
.for_each(|part| match part {
Part::TextPart(text_part) => {
events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
}
Part::InlineDataPart(_) => {}
Part::FunctionCallPart(function_call_part) => {
wants_to_use_tool = true;
let name: Arc<str> = function_call_part.function_call.name.into();
let next_tool_id =
TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
let id: LanguageModelToolUseId =
format!("{}-{}", name, next_tool_id).into();
events.push(Ok(LanguageModelCompletionEvent::ToolUse(
LanguageModelToolUse {
id,
name,
is_input_complete: true,
raw_input: function_call_part.function_call.args.to_string(),
input: function_call_part.function_call.args,
},
)));
}
Part::FunctionResponsePart(_) => {}
Part::ThoughtPart(_) => {}
});
}
}
// Even when Gemini wants to use a Tool, the API
// responds with `finish_reason: STOP`
if wants_to_use_tool {
self.stop_reason = StopReason::ToolUse;
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
}
events
}
}
pub fn count_google_tokens(
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<usize>> {
// We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
// So we have to use tokenizer from tiktoken_rs to count tokens.
cx.background_spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.string_contents()),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
})
.boxed()
}
fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
if let Some(prompt_token_count) = new.prompt_token_count {
usage.prompt_token_count = Some(prompt_token_count);
}
if let Some(cached_content_token_count) = new.cached_content_token_count {
usage.cached_content_token_count = Some(cached_content_token_count);
}
if let Some(candidates_token_count) = new.candidates_token_count {
usage.candidates_token_count = Some(candidates_token_count);
}
if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
}
if let Some(thoughts_token_count) = new.thoughts_token_count {
usage.thoughts_token_count = Some(thoughts_token_count);
}
if let Some(total_token_count) = new.total_token_count {
usage.total_token_count = Some(total_token_count);
}
}
fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
let prompt_tokens = usage.prompt_token_count.unwrap_or(0) as u32;
let cached_tokens = usage.cached_content_token_count.unwrap_or(0) as u32;
let input_tokens = prompt_tokens - cached_tokens;
let output_tokens = usage.candidates_token_count.unwrap_or(0) as u32;
language_model::TokenUsage {
input_tokens,
output_tokens,
cache_read_input_tokens: cached_tokens,
cache_creation_input_tokens: 0,
}
}
struct ConfigurationView {
api_key_editor: Entity<Editor>,
state: gpui::Entity<State>,
load_credentials_task: Option<Task<()>>,
}
impl ConfigurationView {
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
cx.observe(&state, |_, _, cx| {
cx.notify();
})
.detach();
let load_credentials_task = Some(cx.spawn_in(window, {
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
// We don't log an error, because "not signed in" is also an error.
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
api_key_editor: cx.new(|cx| {
let mut editor = Editor::single_line(window, cx);
editor.set_placeholder_text("AIzaSy...", cx);
editor
}),
state,
load_credentials_task,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
let api_key = self.api_key_editor.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state
.update(cx, |state, cx| state.set_api_key(api_key, cx))?
.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
self.api_key_editor
.update(cx, |editor, cx| editor.set_text("", window, cx));
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_fallbacks: settings.ui_font.fallbacks.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
font_style: FontStyle::Normal,
line_height: relative(1.3),
white_space: WhiteSpace::Normal,
..Default::default()
};
EditorElement::new(
&self.api_key_editor,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
!self.state.read(cx).is_authenticated()
}
}
impl Render for ConfigurationView {
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let env_var_set = self.state.read(cx).api_key_from_env;
if self.load_credentials_task.is_some() {
div().child(Label::new("Loading credentials...")).into_any()
} else if self.should_render_editor(cx) {
v_flex()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.child(Label::new("To use Zed's assistant with Google AI, you need to add an API key. Follow these steps:"))
.child(
List::new()
.child(InstructionListItem::new(
"Create one by visiting",
Some("Google AI's console"),
Some("https://aistudio.google.com/app/apikey"),
))
.child(InstructionListItem::text_only(
"Paste your API key below and hit enter to start using the assistant",
)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.border_1()
.border_color(cx.theme().colors().border)
.rounded_sm()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
format!("You can also assign the {GOOGLE_AI_API_KEY_VAR} environment variable and restart Zed."),
)
.size(LabelSize::Small).color(Color::Muted),
)
.into_any()
} else {
h_flex()
.mt_1()
.p_1()
.justify_between()
.rounded_md()
.border_1()
.border_color(cx.theme().colors().border)
.bg(cx.theme().colors().background)
.child(
h_flex()
.gap_1()
.child(Icon::new(IconName::Check).color(Color::Success))
.child(Label::new(if env_var_set {
format!("API key set in {GOOGLE_AI_API_KEY_VAR} environment variable.")
} else {
"API key configured.".to_string()
})),
)
.child(
Button::new("reset-key", "Reset Key")
.label_size(LabelSize::Small)
.icon(Some(IconName::Trash))
.icon_size(IconSize::Small)
.icon_position(IconPosition::Start)
.disabled(env_var_set)
.when(env_var_set, |this| {
this.tooltip(Tooltip::text(format!("To reset your API key, unset the {GOOGLE_AI_API_KEY_VAR} environment variable.")))
})
.on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
)
.into_any()
}
}
}