ZIm/crates/gpui/src/platform/windows/directx_renderer.rs
Junkui Zhang e8bd47f668 wip
2025-07-14 19:59:26 +08:00

1335 lines
44 KiB
Rust

use std::{collections::HashMap, hash::BuildHasherDefault, sync::Arc};
use ::util::ResultExt;
use anyhow::{Context, Result};
use collections::FxHasher;
// #[cfg(not(feature = "enable-renderdoc"))]
// use windows::Win32::Graphics::DirectComposition::*;
use windows::{
Win32::{
Foundation::{HMODULE, HWND},
Graphics::{
Direct3D::*,
Direct3D11::*,
Dxgi::{Common::*, *},
},
},
core::*,
};
use crate::*;
pub(crate) struct DirectXRenderer {
atlas: Arc<DirectXAtlas>,
devices: DirectXDevices,
context: DirectXContext,
globals: DirectXGlobalElements,
pipelines: DirectXRenderPipelines,
hwnd: HWND,
transparent: bool,
}
#[derive(Clone)]
pub(crate) struct DirectXDevices {
dxgi_factory: IDXGIFactory6,
dxgi_device: IDXGIDevice,
device: ID3D11Device,
device_context: ID3D11DeviceContext,
}
struct DirectXContext {
swap_chain: IDXGISwapChain1,
back_buffer: [Option<ID3D11RenderTargetView>; 1],
viewport: [D3D11_VIEWPORT; 1],
// #[cfg(not(feature = "enable-renderdoc"))]
// direct_composition: DirectComposition,
}
struct DirectXRenderPipelines {
shadow_pipeline: PipelineState,
quad_pipeline: PipelineState,
paths_pipeline: PathsPipelineState,
underline_pipeline: PipelineState,
mono_sprites: PipelineState,
poly_sprites: PipelineState,
}
struct DirectXGlobalElements {
global_params_buffer: [Option<ID3D11Buffer>; 1],
sampler: [Option<ID3D11SamplerState>; 1],
blend_state: ID3D11BlendState,
blend_state_for_pr: ID3D11BlendState,
}
#[repr(C)]
struct DrawInstancedIndirectArgs {
vertex_count_per_instance: u32,
instance_count: u32,
start_vertex_location: u32,
start_instance_location: u32,
}
// #[cfg(not(feature = "enable-renderdoc"))]
// struct DirectComposition {
// comp_device: IDCompositionDevice,
// comp_target: IDCompositionTarget,
// comp_visual: IDCompositionVisual,
// }
impl DirectXDevices {
pub(crate) fn new() -> Result<Self> {
let dxgi_factory = get_dxgi_factory()?;
let adapter = get_adapter(&dxgi_factory)?;
let (device, device_context) = {
let mut device: Option<ID3D11Device> = None;
let mut context: Option<ID3D11DeviceContext> = None;
get_device(&adapter, Some(&mut device), Some(&mut context))?;
(device.unwrap(), context.unwrap())
};
let dxgi_device: IDXGIDevice = device.cast()?;
Ok(Self {
dxgi_factory,
dxgi_device,
device,
device_context,
})
}
}
impl DirectXRenderer {
pub(crate) fn new(devices: &DirectXDevices, hwnd: HWND, transparent: bool) -> Result<Self> {
let atlas = Arc::new(DirectXAtlas::new(
devices.device.clone(),
devices.device_context.clone(),
));
let context = DirectXContext::new(devices, hwnd, transparent)?;
let globals = DirectXGlobalElements::new(&devices.device)?;
let pipelines = DirectXRenderPipelines::new(&devices.device)?;
Ok(DirectXRenderer {
atlas,
devices: devices.clone(),
context,
globals,
pipelines,
hwnd,
transparent,
})
}
pub(crate) fn sprite_atlas(&self) -> Arc<dyn PlatformAtlas> {
self.atlas.clone()
}
pub(crate) fn draw(&mut self, scene: &Scene) -> Result<()> {
pre_draw(
&self.devices.device_context,
&self.globals.global_params_buffer,
&self.context.viewport,
&self.context.back_buffer,
[0.0, 0.0, 0.0, 0.0],
&self.globals.blend_state,
)?;
for batch in scene.batches() {
match batch {
PrimitiveBatch::Shadows(shadows) => self.draw_shadows(shadows),
PrimitiveBatch::Quads(quads) => self.draw_quads(quads),
PrimitiveBatch::Paths(paths) => self.draw_paths(paths),
PrimitiveBatch::Underlines(underlines) => self.draw_underlines(underlines),
PrimitiveBatch::MonochromeSprites {
texture_id,
sprites,
} => self.draw_monochrome_sprites(texture_id, sprites),
PrimitiveBatch::PolychromeSprites {
texture_id,
sprites,
} => self.draw_polychrome_sprites(texture_id, sprites),
PrimitiveBatch::Surfaces(surfaces) => self.draw_surfaces(surfaces),
}.context(format!("scene too large: {} paths, {} shadows, {} quads, {} underlines, {} mono, {} poly, {} surfaces",
scene.paths.len(),
scene.shadows.len(),
scene.quads.len(),
scene.underlines.len(),
scene.monochrome_sprites.len(),
scene.polychrome_sprites.len(),
scene.surfaces.len(),))?;
}
unsafe { self.context.swap_chain.Present(0, DXGI_PRESENT(0)) }.ok()?;
Ok(())
}
pub(crate) fn resize(&mut self, new_size: Size<DevicePixels>) -> Result<()> {
unsafe { self.devices.device_context.OMSetRenderTargets(None, None) };
drop(self.context.back_buffer[0].take().unwrap());
unsafe {
self.context.swap_chain.ResizeBuffers(
BUFFER_COUNT as u32,
new_size.width.0 as u32,
new_size.height.0 as u32,
DXGI_FORMAT_B8G8R8A8_UNORM,
DXGI_SWAP_CHAIN_FLAG(0),
)?;
}
let backbuffer = set_render_target_view(
&self.context.swap_chain,
&self.devices.device,
&self.devices.device_context,
)?;
self.context.back_buffer[0] = Some(backbuffer);
self.context.viewport = set_viewport(
&self.devices.device_context,
new_size.width.0 as f32,
new_size.height.0 as f32,
);
Ok(())
}
// #[cfg(not(feature = "enable-renderdoc"))]
// pub(crate) fn update_transparency(
// &mut self,
// background_appearance: WindowBackgroundAppearance,
// ) -> Result<()> {
// // We only support setting `Transparent` and `Opaque` for now.
// match background_appearance {
// WindowBackgroundAppearance::Opaque => {
// if self.transparent {
// return Err(anyhow::anyhow!(
// "Set opaque backgroud from transparent background, a restart is required. Or, you can open a new window."
// ));
// }
// }
// WindowBackgroundAppearance::Transparent | WindowBackgroundAppearance::Blurred => {
// if !self.transparent {
// return Err(anyhow::anyhow!(
// "Set transparent backgroud from opaque background, a restart is required. Or, you can open a new window."
// ));
// }
// }
// }
// Ok(())
// }
// #[cfg(feature = "enable-renderdoc")]
pub(crate) fn update_transparency(
&mut self,
background_appearance: WindowBackgroundAppearance,
) -> Result<()> {
if background_appearance != WindowBackgroundAppearance::Opaque {
Err(anyhow::anyhow!(
"Set transparent background not supported when feature \"enable-renderdoc\" is enabled."
))
} else {
Ok(())
}
}
fn draw_shadows(&mut self, shadows: &[Shadow]) -> Result<()> {
if shadows.is_empty() {
return Ok(());
}
update_buffer_capacity(
&self.pipelines.shadow_pipeline,
std::mem::size_of::<Shadow>(),
shadows.len(),
&self.devices.device,
)
.map(|input| update_pipeline(&mut self.pipelines.shadow_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.shadow_pipeline.buffer,
shadows,
)?;
draw_normal(
&self.devices.device_context,
&self.pipelines.shadow_pipeline,
&self.context.viewport,
&self.globals.global_params_buffer,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,
4,
shadows.len() as u32,
)
}
fn draw_quads(&mut self, quads: &[Quad]) -> Result<()> {
if quads.is_empty() {
return Ok(());
}
update_buffer_capacity(
&self.pipelines.quad_pipeline,
std::mem::size_of::<Quad>(),
quads.len(),
&self.devices.device,
)
.map(|input| update_pipeline(&mut self.pipelines.quad_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.quad_pipeline.buffer,
quads,
)?;
draw_normal(
&self.devices.device_context,
&self.pipelines.quad_pipeline,
&self.context.viewport,
&self.globals.global_params_buffer,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,
4,
quads.len() as u32,
)
}
fn draw_paths(&mut self, paths: &[Path<ScaledPixels>]) -> Result<()> {
if paths.is_empty() {
return Ok(());
}
let mut vertices = Vec::new();
let mut sprites = Vec::with_capacity(paths.len());
let mut draw_indirect_commands = Vec::with_capacity(paths.len());
let mut start_vertex_location = 0;
for (i, path) in paths.iter().enumerate() {
draw_indirect_commands.push(DrawInstancedIndirectArgs {
vertex_count_per_instance: path.vertices.len() as u32,
instance_count: 1,
start_vertex_location,
start_instance_location: i as u32,
});
start_vertex_location += path.vertices.len() as u32;
vertices.extend(path.vertices.iter().map(|v| PathVertex {
xy_position: v.xy_position,
content_mask: ContentMask {
bounds: path.content_mask.bounds,
},
}));
sprites.push(PathSprite {
bounds: path.bounds,
color: path.color,
});
}
update_paths_buffer_capacity(
&self.pipelines.paths_pipeline,
sprites.len(),
&self.devices.device,
)
.map(|input| update_paths_pipeline_buffer(&mut self.pipelines.paths_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.paths_pipeline.buffer,
&sprites,
)?;
update_paths_vertex_capacity(
&mut self.pipelines.paths_pipeline,
vertices.len(),
&self.devices.device,
)
.map(|input| update_paths_pipeline_vertex(&mut self.pipelines.paths_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.paths_pipeline.vertex_buffer,
&vertices,
)?;
update_indirect_buffer_capacity(
&self.pipelines.paths_pipeline,
draw_indirect_commands.len(),
&self.devices.device,
)
.map(|input| update_paths_indirect_buffer(&mut self.pipelines.paths_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.paths_pipeline.indirect_draw_buffer,
&draw_indirect_commands,
)?;
prepare_indirect_draws(
&self.devices.device_context,
&self.pipelines.paths_pipeline,
&self.context.viewport,
&self.globals.global_params_buffer,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST,
)?;
for i in 0..paths.len() {
draw_indirect(
&self.devices.device_context,
&self.pipelines.paths_pipeline.indirect_draw_buffer,
(i * std::mem::size_of::<DrawInstancedIndirectArgs>()) as u32,
);
}
Ok(())
}
fn draw_underlines(&mut self, underlines: &[Underline]) -> Result<()> {
if underlines.is_empty() {
return Ok(());
}
update_buffer_capacity(
&self.pipelines.underline_pipeline,
std::mem::size_of::<Underline>(),
underlines.len(),
&self.devices.device,
)
.map(|input| update_pipeline(&mut self.pipelines.underline_pipeline, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.underline_pipeline.buffer,
underlines,
)?;
draw_normal(
&self.devices.device_context,
&self.pipelines.underline_pipeline,
&self.context.viewport,
&self.globals.global_params_buffer,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,
4,
underlines.len() as u32,
)
}
fn draw_monochrome_sprites(
&mut self,
texture_id: AtlasTextureId,
sprites: &[MonochromeSprite],
) -> Result<()> {
if sprites.is_empty() {
return Ok(());
}
let texture_view = self.atlas.get_texture_view(texture_id);
update_buffer_capacity(
&self.pipelines.mono_sprites,
std::mem::size_of::<MonochromeSprite>(),
sprites.len(),
&self.devices.device,
)
.map(|input| update_pipeline(&mut self.pipelines.mono_sprites, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.mono_sprites.buffer,
sprites,
)?;
draw_with_texture(
&self.devices.device_context,
&self.pipelines.mono_sprites,
&texture_view,
&self.context.viewport,
&self.globals.global_params_buffer,
&self.globals.sampler,
sprites.len() as u32,
)
}
fn draw_polychrome_sprites(
&mut self,
texture_id: AtlasTextureId,
sprites: &[PolychromeSprite],
) -> Result<()> {
if sprites.is_empty() {
return Ok(());
}
let texture_view = self.atlas.get_texture_view(texture_id);
update_buffer_capacity(
&self.pipelines.poly_sprites,
std::mem::size_of::<PolychromeSprite>(),
sprites.len(),
&self.devices.device,
)
.map(|input| update_pipeline(&mut self.pipelines.poly_sprites, input));
update_buffer(
&self.devices.device_context,
&self.pipelines.poly_sprites.buffer,
sprites,
)?;
draw_with_texture(
&self.devices.device_context,
&self.pipelines.poly_sprites,
&texture_view,
&self.context.viewport,
&self.globals.global_params_buffer,
&self.globals.sampler,
sprites.len() as u32,
)
}
fn draw_surfaces(&mut self, surfaces: &[PaintSurface]) -> Result<()> {
if surfaces.is_empty() {
return Ok(());
}
Ok(())
}
}
impl DirectXContext {
pub fn new(devices: &DirectXDevices, hwnd: HWND, transparent: bool) -> Result<Self> {
// #[cfg(not(feature = "enable-renderdoc"))]
// let swap_chain = create_swap_chain(&devices.dxgi_factory, &devices.device, transparent)?;
// #[cfg(feature = "enable-renderdoc")]
let swap_chain =
create_swap_chain_default(&devices.dxgi_factory, &devices.device, hwnd, transparent)?;
// #[cfg(not(feature = "enable-renderdoc"))]
// let direct_composition = DirectComposition::new(&devices.dxgi_device, hwnd)?;
// #[cfg(not(feature = "enable-renderdoc"))]
// direct_composition.set_swap_chain(&swap_chain)?;
let back_buffer = [Some(set_render_target_view(
&swap_chain,
&devices.device,
&devices.device_context,
)?)];
let viewport = set_viewport(&devices.device_context, 1.0, 1.0);
set_rasterizer_state(&devices.device, &devices.device_context)?;
Ok(Self {
swap_chain,
back_buffer,
viewport,
// #[cfg(not(feature = "enable-renderdoc"))]
// direct_composition,
})
}
}
impl DirectXRenderPipelines {
pub fn new(device: &ID3D11Device) -> Result<Self> {
let shadow_pipeline = create_pipieline(
device,
"shadow_vertex",
"shadow_fragment",
std::mem::size_of::<Shadow>(),
32,
)?;
let quad_pipeline = create_pipieline(
device,
"quad_vertex",
"quad_fragment",
std::mem::size_of::<Quad>(),
32,
)?;
// let paths_pipeline = create_pipieline(
// device,
// "paths_vertex",
// "paths_fragment",
// std::mem::size_of::<PathSprite>(),
// 32,
// )?;
let paths_pipeline = PathsPipelineState::new(device)?;
let underline_pipeline = create_pipieline(
device,
"underline_vertex",
"underline_fragment",
std::mem::size_of::<Underline>(),
32,
)?;
let mono_sprites = create_pipieline(
device,
"monochrome_sprite_vertex",
"monochrome_sprite_fragment",
std::mem::size_of::<MonochromeSprite>(),
32,
)?;
let poly_sprites = create_pipieline(
device,
"polychrome_sprite_vertex",
"polychrome_sprite_fragment",
std::mem::size_of::<PolychromeSprite>(),
32,
)?;
Ok(Self {
shadow_pipeline,
quad_pipeline,
paths_pipeline,
underline_pipeline,
mono_sprites,
poly_sprites,
})
}
}
// #[cfg(not(feature = "enable-renderdoc"))]
// impl DirectComposition {
// pub fn new(dxgi_device: &IDXGIDevice, hwnd: HWND) -> Result<Self> {
// let comp_device = get_comp_device(&dxgi_device)?;
// let comp_target = unsafe { comp_device.CreateTargetForHwnd(hwnd, true) }?;
// let comp_visual = unsafe { comp_device.CreateVisual() }?;
// Ok(Self {
// comp_device,
// comp_target,
// comp_visual,
// })
// }
// pub fn set_swap_chain(&self, swap_chain: &IDXGISwapChain1) -> Result<()> {
// unsafe {
// self.comp_visual.SetContent(swap_chain)?;
// self.comp_target.SetRoot(&self.comp_visual)?;
// self.comp_device.Commit()?;
// }
// Ok(())
// }
// }
impl DirectXGlobalElements {
pub fn new(device: &ID3D11Device) -> Result<Self> {
let global_params_buffer = unsafe {
let desc = D3D11_BUFFER_DESC {
ByteWidth: std::mem::size_of::<GlobalParams>() as u32,
Usage: D3D11_USAGE_DYNAMIC,
BindFlags: D3D11_BIND_CONSTANT_BUFFER.0 as u32,
CPUAccessFlags: D3D11_CPU_ACCESS_WRITE.0 as u32,
..Default::default()
};
let mut buffer = None;
device.CreateBuffer(&desc, None, Some(&mut buffer))?;
[buffer]
};
let sampler = unsafe {
let desc = D3D11_SAMPLER_DESC {
Filter: D3D11_FILTER_MIN_MAG_MIP_LINEAR,
AddressU: D3D11_TEXTURE_ADDRESS_WRAP,
AddressV: D3D11_TEXTURE_ADDRESS_WRAP,
AddressW: D3D11_TEXTURE_ADDRESS_WRAP,
MipLODBias: 0.0,
MaxAnisotropy: 1,
ComparisonFunc: D3D11_COMPARISON_ALWAYS,
BorderColor: [0.0; 4],
MinLOD: 0.0,
MaxLOD: D3D11_FLOAT32_MAX,
};
let mut output = None;
device.CreateSamplerState(&desc, Some(&mut output))?;
[output]
};
let blend_state = create_blend_state(device)?;
let blend_state_for_pr = create_blend_state_for_path_raster(device)?;
Ok(Self {
global_params_buffer,
sampler,
blend_state,
blend_state_for_pr,
})
}
}
#[derive(Debug, Default)]
#[repr(C)]
struct GlobalParams {
viewport_size: [f32; 2],
_pad: u64,
}
struct PipelineState {
vertex: ID3D11VertexShader,
fragment: ID3D11PixelShader,
buffer: ID3D11Buffer,
buffer_size: usize,
view: [Option<ID3D11ShaderResourceView>; 1],
}
struct PathsPipelineState {
vertex: ID3D11VertexShader,
fragment: ID3D11PixelShader,
buffer: ID3D11Buffer,
buffer_size: usize,
vertex_buffer: ID3D11Buffer,
vertex_buffer_size: usize,
indirect_draw_buffer: ID3D11Buffer,
indirect_buffer_size: usize,
view: [Option<ID3D11ShaderResourceView>; 1],
vertex_view: [Option<ID3D11ShaderResourceView>; 1],
}
impl PathsPipelineState {
fn new(device: &ID3D11Device) -> Result<Self> {
let vertex = {
let shader_blob = shader_resources::build_shader_blob("paths_vertex", "vs_5_0")?;
let bytes = unsafe {
std::slice::from_raw_parts(
shader_blob.GetBufferPointer() as *mut u8,
shader_blob.GetBufferSize(),
)
};
create_vertex_shader(device, bytes)?
};
let fragment = {
let shader_blob = shader_resources::build_shader_blob("paths_fragment", "ps_5_0")?;
let bytes = unsafe {
std::slice::from_raw_parts(
shader_blob.GetBufferPointer() as *mut u8,
shader_blob.GetBufferSize(),
)
};
create_fragment_shader(device, bytes)?
};
let buffer = create_buffer(device, std::mem::size_of::<PathSprite>(), 32)?;
let view = create_buffer_view(device, &buffer)?;
let vertex_buffer =
create_buffer(device, std::mem::size_of::<PathVertex<ScaledPixels>>(), 32)?;
let vertex_view = create_buffer_view(device, &vertex_buffer)?;
let indirect_draw_buffer = create_indirect_draw_buffer(device, 32)?;
Ok(Self {
vertex,
fragment,
buffer,
buffer_size: 32,
vertex_buffer,
vertex_buffer_size: 32,
indirect_draw_buffer,
indirect_buffer_size: 32,
view,
vertex_view,
})
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
#[repr(C)]
struct PathSprite {
bounds: Bounds<ScaledPixels>,
color: Background,
}
fn get_dxgi_factory() -> Result<IDXGIFactory6> {
#[cfg(debug_assertions)]
let factory_flag = DXGI_CREATE_FACTORY_DEBUG;
#[cfg(not(debug_assertions))]
let factory_flag = 0u32;
unsafe { Ok(CreateDXGIFactory2(factory_flag)?) }
}
fn get_adapter(dxgi_factory: &IDXGIFactory6) -> Result<IDXGIAdapter1> {
for adapter_index in 0.. {
let adapter: IDXGIAdapter1 = unsafe {
dxgi_factory
.EnumAdapterByGpuPreference(adapter_index, DXGI_GPU_PREFERENCE_MINIMUM_POWER)
}?;
{
let desc = unsafe { adapter.GetDesc1() }?;
println!(
"Select GPU: {}",
String::from_utf16_lossy(&desc.Description)
);
}
// Check to see whether the adapter supports Direct3D 11, but don't
// create the actual device yet.
if get_device(&adapter, None, None).log_err().is_some() {
return Ok(adapter);
}
}
unreachable!()
}
fn get_device(
adapter: &IDXGIAdapter1,
device: Option<*mut Option<ID3D11Device>>,
context: Option<*mut Option<ID3D11DeviceContext>>,
) -> Result<()> {
#[cfg(debug_assertions)]
let device_flags = D3D11_CREATE_DEVICE_BGRA_SUPPORT | D3D11_CREATE_DEVICE_DEBUG;
#[cfg(not(debug_assertions))]
let device_flags = D3D11_CREATE_DEVICE_BGRA_SUPPORT;
Ok(unsafe {
D3D11CreateDevice(
adapter,
D3D_DRIVER_TYPE_UNKNOWN,
HMODULE::default(),
device_flags,
Some(&[D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_11_1]),
D3D11_SDK_VERSION,
device,
None,
context,
)?
})
}
// #[cfg(not(feature = "enable-renderdoc"))]
// fn get_comp_device(dxgi_device: &IDXGIDevice) -> Result<IDCompositionDevice> {
// Ok(unsafe { DCompositionCreateDevice(dxgi_device)? })
// }
// fn create_swap_chain(
// dxgi_factory: &IDXGIFactory6,
// device: &ID3D11Device,
// transparent: bool,
// ) -> Result<IDXGISwapChain1> {
// let alpha_mode = if transparent {
// DXGI_ALPHA_MODE_PREMULTIPLIED
// } else {
// DXGI_ALPHA_MODE_IGNORE
// };
// let desc = DXGI_SWAP_CHAIN_DESC1 {
// Width: 1,
// Height: 1,
// Format: DXGI_FORMAT_B8G8R8A8_UNORM,
// Stereo: false.into(),
// SampleDesc: DXGI_SAMPLE_DESC {
// Count: 1,
// Quality: 0,
// },
// BufferUsage: DXGI_USAGE_RENDER_TARGET_OUTPUT,
// BufferCount: BUFFER_COUNT as u32,
// // Composition SwapChains only support the DXGI_SCALING_STRETCH Scaling.
// Scaling: DXGI_SCALING_STRETCH,
// SwapEffect: DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL,
// AlphaMode: alpha_mode,
// Flags: 0,
// };
// Ok(unsafe { dxgi_factory.CreateSwapChainForComposition(device, &desc, None)? })
// }
// #[cfg(feature = "enable-renderdoc")]
fn create_swap_chain_default(
dxgi_factory: &IDXGIFactory6,
device: &ID3D11Device,
hwnd: HWND,
_transparent: bool,
) -> Result<IDXGISwapChain1> {
use windows::Win32::Graphics::Dxgi::DXGI_MWA_NO_ALT_ENTER;
let desc = DXGI_SWAP_CHAIN_DESC1 {
Width: 1,
Height: 1,
Format: DXGI_FORMAT_B8G8R8A8_UNORM,
Stereo: false.into(),
SampleDesc: DXGI_SAMPLE_DESC {
Count: 1,
Quality: 0,
},
BufferUsage: DXGI_USAGE_RENDER_TARGET_OUTPUT,
BufferCount: BUFFER_COUNT as u32,
Scaling: DXGI_SCALING_STRETCH,
SwapEffect: DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL,
AlphaMode: DXGI_ALPHA_MODE_IGNORE,
Flags: 0,
};
let swap_chain =
unsafe { dxgi_factory.CreateSwapChainForHwnd(device, hwnd, &desc, None, None) }?;
unsafe { dxgi_factory.MakeWindowAssociation(hwnd, DXGI_MWA_NO_ALT_ENTER) }?;
Ok(swap_chain)
}
fn set_render_target_view(
swap_chain: &IDXGISwapChain1,
device: &ID3D11Device,
device_context: &ID3D11DeviceContext,
) -> Result<ID3D11RenderTargetView> {
// In dx11, ID3D11RenderTargetView is supposed to always point to the new back buffer.
// https://stackoverflow.com/questions/65246961/does-the-backbuffer-that-a-rendertargetview-points-to-automagically-change-after
let back_buffer = unsafe {
let resource: ID3D11Texture2D = swap_chain.GetBuffer(0)?;
let mut buffer: Option<ID3D11RenderTargetView> = None;
device.CreateRenderTargetView(&resource, None, Some(&mut buffer))?;
buffer.unwrap()
};
unsafe { device_context.OMSetRenderTargets(Some(&[Some(back_buffer.clone())]), None) };
Ok(back_buffer)
}
fn set_viewport(
device_context: &ID3D11DeviceContext,
width: f32,
height: f32,
) -> [D3D11_VIEWPORT; 1] {
let viewport = [D3D11_VIEWPORT {
TopLeftX: 0.0,
TopLeftY: 0.0,
Width: width,
Height: height,
MinDepth: 0.0,
MaxDepth: 1.0,
}];
unsafe { device_context.RSSetViewports(Some(&viewport)) };
viewport
}
fn set_rasterizer_state(device: &ID3D11Device, device_context: &ID3D11DeviceContext) -> Result<()> {
let desc = D3D11_RASTERIZER_DESC {
FillMode: D3D11_FILL_SOLID,
CullMode: D3D11_CULL_NONE,
// CullMode: D3D11_CULL_BACK,
FrontCounterClockwise: false.into(),
DepthBias: 0,
DepthBiasClamp: 0.0,
SlopeScaledDepthBias: 0.0,
DepthClipEnable: true.into(),
ScissorEnable: false.into(),
MultisampleEnable: false.into(),
AntialiasedLineEnable: false.into(),
};
let rasterizer_state = unsafe {
let mut state = None;
device.CreateRasterizerState(&desc, Some(&mut state))?;
state.unwrap()
};
unsafe { device_context.RSSetState(&rasterizer_state) };
Ok(())
}
// https://learn.microsoft.com/en-us/windows/win32/api/d3d11/ns-d3d11-d3d11_blend_desc
fn create_blend_state(device: &ID3D11Device) -> Result<ID3D11BlendState> {
// If the feature level is set to greater than D3D_FEATURE_LEVEL_9_3, the display
// device performs the blend in linear space, which is ideal.
let mut desc = D3D11_BLEND_DESC::default();
desc.RenderTarget[0].BlendEnable = true.into();
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL.0 as u8;
unsafe {
let mut state = None;
device.CreateBlendState(&desc, Some(&mut state))?;
Ok(state.unwrap())
}
}
fn create_blend_state_for_path_raster(device: &ID3D11Device) -> Result<ID3D11BlendState> {
// If the feature level is set to greater than D3D_FEATURE_LEVEL_9_3, the display
// device performs the blend in linear space, which is ideal.
let mut desc = D3D11_BLEND_DESC::default();
desc.RenderTarget[0].BlendEnable = true.into();
desc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
desc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlend = D3D11_BLEND_ONE;
desc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ONE;
desc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL.0 as u8;
unsafe {
let mut state = None;
device.CreateBlendState(&desc, Some(&mut state))?;
Ok(state.unwrap())
}
}
fn create_pipieline(
device: &ID3D11Device,
vertex_entry: &str,
fragment_entry: &str,
element_size: usize,
buffer_size: usize,
) -> Result<PipelineState> {
let vertex = {
let shader_blob = shader_resources::build_shader_blob(vertex_entry, "vs_5_0")?;
let bytes = unsafe {
std::slice::from_raw_parts(
shader_blob.GetBufferPointer() as *mut u8,
shader_blob.GetBufferSize(),
)
};
create_vertex_shader(device, bytes)?
};
let fragment = {
let shader_blob = shader_resources::build_shader_blob(fragment_entry, "ps_5_0")?;
let bytes = unsafe {
std::slice::from_raw_parts(
shader_blob.GetBufferPointer() as *mut u8,
shader_blob.GetBufferSize(),
)
};
create_fragment_shader(device, bytes)?
};
let buffer = create_buffer(device, element_size, buffer_size)?;
let view = create_buffer_view(device, &buffer)?;
Ok(PipelineState {
vertex,
fragment,
buffer,
buffer_size,
view,
})
}
fn create_vertex_shader(device: &ID3D11Device, bytes: &[u8]) -> Result<ID3D11VertexShader> {
unsafe {
let mut shader = None;
device.CreateVertexShader(bytes, None, Some(&mut shader))?;
Ok(shader.unwrap())
}
}
fn create_fragment_shader(device: &ID3D11Device, bytes: &[u8]) -> Result<ID3D11PixelShader> {
unsafe {
let mut shader = None;
device.CreatePixelShader(bytes, None, Some(&mut shader))?;
Ok(shader.unwrap())
}
}
fn create_buffer(
device: &ID3D11Device,
element_size: usize,
buffer_size: usize,
) -> Result<ID3D11Buffer> {
let desc = D3D11_BUFFER_DESC {
ByteWidth: (element_size * buffer_size) as u32,
Usage: D3D11_USAGE_DYNAMIC,
BindFlags: D3D11_BIND_SHADER_RESOURCE.0 as u32,
CPUAccessFlags: D3D11_CPU_ACCESS_WRITE.0 as u32,
MiscFlags: D3D11_RESOURCE_MISC_BUFFER_STRUCTURED.0 as u32,
StructureByteStride: element_size as u32,
};
let mut buffer = None;
unsafe { device.CreateBuffer(&desc, None, Some(&mut buffer)) }?;
Ok(buffer.unwrap())
}
fn create_buffer_view(
device: &ID3D11Device,
buffer: &ID3D11Buffer,
) -> Result<[Option<ID3D11ShaderResourceView>; 1]> {
let mut view = None;
unsafe { device.CreateShaderResourceView(buffer, None, Some(&mut view)) }?;
Ok([view])
}
fn create_indirect_draw_buffer(device: &ID3D11Device, buffer_size: u32) -> Result<ID3D11Buffer> {
// let desc = D3D11_BUFFER_DESC {
// ByteWidth: std::mem::size_of::<DrawInstancedIndirectArgs>() as u32 * buffer_size,
// Usage: D3D11_USAGE_DYNAMIC,
// BindFlags: D3D11_BIND_INDIRECT_DRAW.0 as u32,
// MiscFlags: D3D11_RESOURCE_MISC_DRAWINDIRECT_ARGS.0 as u32,
// ..Default::default()
// };
let desc = D3D11_BUFFER_DESC {
ByteWidth: std::mem::size_of::<DrawInstancedIndirectArgs>() as u32 * buffer_size,
Usage: D3D11_USAGE_DYNAMIC,
BindFlags: D3D11_BIND_INDEX_BUFFER.0 as u32,
CPUAccessFlags: D3D11_CPU_ACCESS_WRITE.0 as u32,
MiscFlags: D3D11_RESOURCE_MISC_DRAWINDIRECT_ARGS.0 as u32,
StructureByteStride: std::mem::size_of::<DrawInstancedIndirectArgs>() as u32,
};
let mut buffer = None;
unsafe { device.CreateBuffer(&desc, None, Some(&mut buffer)) }?;
Ok(buffer.unwrap())
}
fn update_global_params(
device_context: &ID3D11DeviceContext,
buffer: &[Option<ID3D11Buffer>; 1],
globals: GlobalParams,
) -> Result<()> {
let buffer = buffer[0].as_ref().unwrap();
unsafe {
let mut data = std::mem::zeroed();
device_context.Map(buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, Some(&mut data))?;
std::ptr::copy_nonoverlapping(&globals, data.pData as *mut _, 1);
device_context.Unmap(buffer, 0);
}
Ok(())
}
fn pre_draw(
device_context: &ID3D11DeviceContext,
global_params_buffer: &[Option<ID3D11Buffer>; 1],
view_port: &[D3D11_VIEWPORT; 1],
render_target_view: &[Option<ID3D11RenderTargetView>; 1],
clear_color: [f32; 4],
blend_state: &ID3D11BlendState,
) -> Result<()> {
update_global_params(
device_context,
global_params_buffer,
GlobalParams {
viewport_size: [view_port[0].Width, view_port[0].Height],
..Default::default()
},
)?;
unsafe {
device_context.RSSetViewports(Some(view_port));
device_context.OMSetRenderTargets(Some(render_target_view), None);
device_context.ClearRenderTargetView(render_target_view[0].as_ref().unwrap(), &clear_color);
device_context.OMSetBlendState(blend_state, None, 0xFFFFFFFF);
}
Ok(())
}
fn update_buffer_capacity(
pipeline: &PipelineState,
element_size: usize,
data_size: usize,
device: &ID3D11Device,
) -> Option<(ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1])> {
if pipeline.buffer_size >= data_size {
return None;
}
println!("buffer too small: {} < {}", pipeline.buffer_size, data_size);
let buffer_size = data_size.next_power_of_two();
println!("New size: {}", buffer_size);
let buffer = create_buffer(device, element_size, buffer_size).unwrap();
let view = create_buffer_view(device, &buffer).unwrap();
Some((buffer, buffer_size, view))
}
fn update_paths_buffer_capacity(
pipeline: &PathsPipelineState,
data_size: usize,
device: &ID3D11Device,
) -> Option<(ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1])> {
if pipeline.buffer_size >= data_size {
return None;
}
println!(
"Paths buffer too small: {} < {}",
pipeline.buffer_size, data_size
);
let buffer_size = data_size.next_power_of_two();
println!("Paths New size: {}", buffer_size);
let buffer = create_buffer(device, std::mem::size_of::<PathSprite>(), buffer_size).unwrap();
let view = create_buffer_view(device, &buffer).unwrap();
Some((buffer, buffer_size, view))
}
fn update_paths_vertex_capacity(
pipeline: &PathsPipelineState,
vertex_size: usize,
device: &ID3D11Device,
) -> Option<(ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1])> {
if pipeline.vertex_buffer_size >= vertex_size {
return None;
}
println!(
"Paths vertex buffer too small: {} < {}",
pipeline.vertex_buffer_size, vertex_size
);
let vertex_size = vertex_size.next_power_of_two();
println!("Paths vertex New size: {}", vertex_size);
let buffer = create_buffer(
device,
std::mem::size_of::<PathVertex<ScaledPixels>>(),
vertex_size,
)
.unwrap();
let view = create_buffer_view(device, &buffer).unwrap();
Some((buffer, vertex_size, view))
}
fn update_indirect_buffer_capacity(
pipeline: &PathsPipelineState,
data_size: usize,
device: &ID3D11Device,
) -> Option<(ID3D11Buffer, usize)> {
if pipeline.indirect_buffer_size >= data_size {
return None;
}
println!(
"Indirect buffer too small: {} < {}",
pipeline.indirect_buffer_size, data_size
);
let buffer_size = data_size.next_power_of_two();
println!("Indirect New size: {}", buffer_size);
let buffer = create_indirect_draw_buffer(device, data_size as u32).unwrap();
Some((buffer, buffer_size))
}
fn update_pipeline(
pipeline: &mut PipelineState,
input: (ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1]),
) {
pipeline.buffer = input.0;
pipeline.buffer_size = input.1;
pipeline.view = input.2;
}
fn update_paths_pipeline_buffer(
pipeline: &mut PathsPipelineState,
input: (ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1]),
) {
pipeline.buffer = input.0;
pipeline.buffer_size = input.1;
pipeline.view = input.2;
}
fn update_paths_pipeline_vertex(
pipeline: &mut PathsPipelineState,
input: (ID3D11Buffer, usize, [Option<ID3D11ShaderResourceView>; 1]),
) {
pipeline.vertex_buffer = input.0;
pipeline.vertex_buffer_size = input.1;
pipeline.vertex_view = input.2;
}
fn update_paths_indirect_buffer(pipeline: &mut PathsPipelineState, input: (ID3D11Buffer, usize)) {
pipeline.indirect_draw_buffer = input.0;
pipeline.indirect_buffer_size = input.1;
}
fn update_buffer<T>(
device_context: &ID3D11DeviceContext,
buffer: &ID3D11Buffer,
data: &[T],
) -> Result<()> {
unsafe {
let mut dest = std::mem::zeroed();
device_context.Map(buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, Some(&mut dest))?;
std::ptr::copy_nonoverlapping(data.as_ptr(), dest.pData as _, data.len());
device_context.Unmap(buffer, 0);
}
Ok(())
}
fn update_indirect_buffer(
device_context: &ID3D11DeviceContext,
buffer: &ID3D11Buffer,
data: &[DrawInstancedIndirectArgs],
) -> Result<()> {
unsafe {
let mut dest = std::mem::zeroed();
device_context.Map(buffer, 0, D3D11_MAP_WRITE_DISCARD, 0, Some(&mut dest))?;
std::ptr::copy_nonoverlapping(data.as_ptr(), dest.pData as _, data.len());
device_context.Unmap(buffer, 0);
}
Ok(())
}
fn prepare_indirect_draws(
device_context: &ID3D11DeviceContext,
pipeline: &PathsPipelineState,
viewport: &[D3D11_VIEWPORT],
global_params: &[Option<ID3D11Buffer>],
topology: D3D_PRIMITIVE_TOPOLOGY,
) -> Result<()> {
unsafe {
device_context.VSSetShaderResources(1, Some(&pipeline.vertex_view));
device_context.VSSetShaderResources(2, Some(&pipeline.view));
device_context.PSSetShaderResources(2, Some(&pipeline.view));
device_context.IASetPrimitiveTopology(topology);
device_context.RSSetViewports(Some(viewport));
device_context.VSSetShader(&pipeline.vertex, None);
device_context.PSSetShader(&pipeline.fragment, None);
device_context.VSSetConstantBuffers(0, Some(global_params));
device_context.PSSetConstantBuffers(0, Some(global_params));
}
Ok(())
}
fn draw_indirect(
device_context: &ID3D11DeviceContext,
indirect_draw_buffer: &ID3D11Buffer,
offset: u32,
) {
unsafe {
device_context.DrawInstancedIndirect(indirect_draw_buffer, offset);
}
}
fn draw_normal(
device_context: &ID3D11DeviceContext,
pipeline: &PipelineState,
viewport: &[D3D11_VIEWPORT],
global_params: &[Option<ID3D11Buffer>],
topology: D3D_PRIMITIVE_TOPOLOGY,
vertex_count: u32,
instance_count: u32,
) -> Result<()> {
unsafe {
device_context.VSSetShaderResources(1, Some(&pipeline.view));
device_context.PSSetShaderResources(1, Some(&pipeline.view));
device_context.IASetPrimitiveTopology(topology);
device_context.RSSetViewports(Some(viewport));
device_context.VSSetShader(&pipeline.vertex, None);
device_context.PSSetShader(&pipeline.fragment, None);
device_context.VSSetConstantBuffers(0, Some(global_params));
device_context.PSSetConstantBuffers(0, Some(global_params));
device_context.DrawInstanced(vertex_count, instance_count, 0, 0);
}
Ok(())
}
fn draw_with_texture(
device_context: &ID3D11DeviceContext,
pipeline: &PipelineState,
texture: &[Option<ID3D11ShaderResourceView>],
viewport: &[D3D11_VIEWPORT],
global_params: &[Option<ID3D11Buffer>],
sampler: &[Option<ID3D11SamplerState>],
instance_count: u32,
) -> Result<()> {
unsafe {
device_context.IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
device_context.RSSetViewports(Some(viewport));
device_context.VSSetShader(&pipeline.vertex, None);
device_context.PSSetShader(&pipeline.fragment, None);
device_context.VSSetConstantBuffers(0, Some(global_params));
device_context.PSSetConstantBuffers(0, Some(global_params));
device_context.VSSetShaderResources(1, Some(&pipeline.view));
device_context.PSSetShaderResources(1, Some(&pipeline.view));
device_context.PSSetSamplers(0, Some(sampler));
device_context.VSSetShaderResources(0, Some(texture));
device_context.PSSetShaderResources(0, Some(texture));
device_context.DrawInstanced(4, instance_count, 0, 0);
}
Ok(())
}
const BUFFER_COUNT: usize = 3;
mod shader_resources {
use anyhow::Result;
use windows::Win32::Graphics::Direct3D::{
Fxc::{D3DCOMPILE_DEBUG, D3DCOMPILE_SKIP_OPTIMIZATION, D3DCompileFromFile},
ID3DBlob,
};
use windows_core::{HSTRING, PCSTR};
pub(super) fn build_shader_blob(entry: &str, target: &str) -> Result<ID3DBlob> {
println!("Building shader: {}", entry);
unsafe {
let mut entry = entry.to_owned();
let mut target = target.to_owned();
let mut compile_blob = None;
let mut error_blob = None;
let shader_path = std::path::PathBuf::from(env!("CARGO_MANIFEST_DIR"))
.join("src/platform/windows/shaders.hlsl")
.canonicalize()
.unwrap();
entry.push_str("\0");
target.push_str("\0");
let entry_point = PCSTR::from_raw(entry.as_ptr());
let target_cstr = PCSTR::from_raw(target.as_ptr());
println!(
"Compiling shader: {} with target: {}",
entry_point.display(),
target_cstr.display()
);
#[cfg(debug_assertions)]
let compile_flag = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#[cfg(not(debug_assertions))]
let compile_flag = 0;
let ret = D3DCompileFromFile(
&HSTRING::from(shader_path.to_str().unwrap()),
None,
None,
entry_point,
target_cstr,
compile_flag,
0,
&mut compile_blob,
Some(&mut error_blob),
);
println!("Shader compile result: {:?}", ret);
if ret.is_err() {
let Some(error_blob) = error_blob else {
return Err(anyhow::anyhow!("{ret:?}"));
};
let string_len = error_blob.GetBufferSize();
let error_string_encode = Vec::from_raw_parts(
error_blob.GetBufferPointer() as *mut u8,
string_len,
string_len,
);
let error_string = String::from_utf8_lossy(&error_string_encode);
println!("Shader compile error: {}", error_string);
return Err(anyhow::anyhow!("Compile error: {}", error_string));
}
Ok(compile_blob.unwrap())
}
}
}