ZIm/crates/gpui/src/taffy.rs
Piotr Osiewicz ed14ab8c02
gpui: Introduce stacker to address stack overflows with deep layout trees (#35813)
Co-authored-by: Anthony Eid <hello@anthonyeid.me>
Co-authored-by: Lukas Wirth <lukas@zed.dev>
Co-authored-by: Ben Kunkle <ben@zed.dev>

Release Notes:

- N/A

Co-authored-by: Anthony Eid <hello@anthonyeid.me>
Co-authored-by: Lukas Wirth <lukas@zed.dev>
Co-authored-by: Ben Kunkle <ben@zed.dev>
2025-08-19 08:26:37 +00:00

543 lines
17 KiB
Rust

use crate::{
AbsoluteLength, App, Bounds, DefiniteLength, Edges, Length, Pixels, Point, Size, Style, Window,
};
use collections::{FxHashMap, FxHashSet};
use smallvec::SmallVec;
use stacksafe::{StackSafe, stacksafe};
use std::{fmt::Debug, ops::Range};
use taffy::{
TaffyTree, TraversePartialTree as _,
geometry::{Point as TaffyPoint, Rect as TaffyRect, Size as TaffySize},
style::AvailableSpace as TaffyAvailableSpace,
tree::NodeId,
};
type NodeMeasureFn = StackSafe<
Box<
dyn FnMut(
Size<Option<Pixels>>,
Size<AvailableSpace>,
&mut Window,
&mut App,
) -> Size<Pixels>,
>,
>;
struct NodeContext {
measure: NodeMeasureFn,
}
pub struct TaffyLayoutEngine {
taffy: TaffyTree<NodeContext>,
absolute_layout_bounds: FxHashMap<LayoutId, Bounds<Pixels>>,
computed_layouts: FxHashSet<LayoutId>,
}
const EXPECT_MESSAGE: &str = "we should avoid taffy layout errors by construction if possible";
impl TaffyLayoutEngine {
pub fn new() -> Self {
let mut taffy = TaffyTree::new();
taffy.disable_rounding();
TaffyLayoutEngine {
taffy,
absolute_layout_bounds: FxHashMap::default(),
computed_layouts: FxHashSet::default(),
}
}
pub fn clear(&mut self) {
self.taffy.clear();
self.absolute_layout_bounds.clear();
self.computed_layouts.clear();
}
pub fn request_layout(
&mut self,
style: Style,
rem_size: Pixels,
children: &[LayoutId],
) -> LayoutId {
let taffy_style = style.to_taffy(rem_size);
let layout_id = if children.is_empty() {
self.taffy
.new_leaf(taffy_style)
.expect(EXPECT_MESSAGE)
.into()
} else {
let parent_id = self
.taffy
// This is safe because LayoutId is repr(transparent) to taffy::tree::NodeId.
.new_with_children(taffy_style, unsafe {
std::mem::transmute::<&[LayoutId], &[taffy::NodeId]>(children)
})
.expect(EXPECT_MESSAGE)
.into();
parent_id
};
layout_id
}
pub fn request_measured_layout(
&mut self,
style: Style,
rem_size: Pixels,
measure: impl FnMut(
Size<Option<Pixels>>,
Size<AvailableSpace>,
&mut Window,
&mut App,
) -> Size<Pixels>
+ 'static,
) -> LayoutId {
let taffy_style = style.to_taffy(rem_size);
let layout_id = self
.taffy
.new_leaf_with_context(
taffy_style,
NodeContext {
measure: StackSafe::new(Box::new(measure)),
},
)
.expect(EXPECT_MESSAGE)
.into();
layout_id
}
// Used to understand performance
#[allow(dead_code)]
fn count_all_children(&self, parent: LayoutId) -> anyhow::Result<u32> {
let mut count = 0;
for child in self.taffy.children(parent.0)? {
// Count this child.
count += 1;
// Count all of this child's children.
count += self.count_all_children(LayoutId(child))?
}
Ok(count)
}
// Used to understand performance
#[allow(dead_code)]
fn max_depth(&self, depth: u32, parent: LayoutId) -> anyhow::Result<u32> {
println!(
"{parent:?} at depth {depth} has {} children",
self.taffy.child_count(parent.0)
);
let mut max_child_depth = 0;
for child in self.taffy.children(parent.0)? {
max_child_depth = std::cmp::max(max_child_depth, self.max_depth(0, LayoutId(child))?);
}
Ok(depth + 1 + max_child_depth)
}
// Used to understand performance
#[allow(dead_code)]
fn get_edges(&self, parent: LayoutId) -> anyhow::Result<Vec<(LayoutId, LayoutId)>> {
let mut edges = Vec::new();
for child in self.taffy.children(parent.0)? {
edges.push((parent, LayoutId(child)));
edges.extend(self.get_edges(LayoutId(child))?);
}
Ok(edges)
}
#[stacksafe]
pub fn compute_layout(
&mut self,
id: LayoutId,
available_space: Size<AvailableSpace>,
window: &mut Window,
cx: &mut App,
) {
// Leaving this here until we have a better instrumentation approach.
// println!("Laying out {} children", self.count_all_children(id)?);
// println!("Max layout depth: {}", self.max_depth(0, id)?);
// Output the edges (branches) of the tree in Mermaid format for visualization.
// println!("Edges:");
// for (a, b) in self.get_edges(id)? {
// println!("N{} --> N{}", u64::from(a), u64::from(b));
// }
// println!("");
//
if !self.computed_layouts.insert(id) {
let mut stack = SmallVec::<[LayoutId; 64]>::new();
stack.push(id);
while let Some(id) = stack.pop() {
self.absolute_layout_bounds.remove(&id);
stack.extend(
self.taffy
.children(id.into())
.expect(EXPECT_MESSAGE)
.into_iter()
.map(Into::into),
);
}
}
// let started_at = std::time::Instant::now();
self.taffy
.compute_layout_with_measure(
id.into(),
available_space.into(),
|known_dimensions, available_space, _id, node_context, _style| {
let Some(node_context) = node_context else {
return taffy::geometry::Size::default();
};
let known_dimensions = Size {
width: known_dimensions.width.map(Pixels),
height: known_dimensions.height.map(Pixels),
};
(node_context.measure)(known_dimensions, available_space.into(), window, cx)
.into()
},
)
.expect(EXPECT_MESSAGE);
// println!("compute_layout took {:?}", started_at.elapsed());
}
pub fn layout_bounds(&mut self, id: LayoutId) -> Bounds<Pixels> {
if let Some(layout) = self.absolute_layout_bounds.get(&id).cloned() {
return layout;
}
let layout = self.taffy.layout(id.into()).expect(EXPECT_MESSAGE);
let mut bounds = Bounds {
origin: layout.location.into(),
size: layout.size.into(),
};
if let Some(parent_id) = self.taffy.parent(id.0) {
let parent_bounds = self.layout_bounds(parent_id.into());
bounds.origin += parent_bounds.origin;
}
self.absolute_layout_bounds.insert(id, bounds);
bounds
}
}
/// A unique identifier for a layout node, generated when requesting a layout from Taffy
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[repr(transparent)]
pub struct LayoutId(NodeId);
impl std::hash::Hash for LayoutId {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
u64::from(self.0).hash(state);
}
}
impl From<NodeId> for LayoutId {
fn from(node_id: NodeId) -> Self {
Self(node_id)
}
}
impl From<LayoutId> for NodeId {
fn from(layout_id: LayoutId) -> NodeId {
layout_id.0
}
}
trait ToTaffy<Output> {
fn to_taffy(&self, rem_size: Pixels) -> Output;
}
impl ToTaffy<taffy::style::Style> for Style {
fn to_taffy(&self, rem_size: Pixels) -> taffy::style::Style {
use taffy::style_helpers::{fr, length, minmax, repeat};
fn to_grid_line(
placement: &Range<crate::GridPlacement>,
) -> taffy::Line<taffy::GridPlacement> {
taffy::Line {
start: placement.start.into(),
end: placement.end.into(),
}
}
fn to_grid_repeat<T: taffy::style::CheapCloneStr>(
unit: &Option<u16>,
) -> Vec<taffy::GridTemplateComponent<T>> {
// grid-template-columns: repeat(<number>, minmax(0, 1fr));
unit.map(|count| vec![repeat(count, vec![minmax(length(0.0), fr(1.0))])])
.unwrap_or_default()
}
taffy::style::Style {
display: self.display.into(),
overflow: self.overflow.into(),
scrollbar_width: self.scrollbar_width,
position: self.position.into(),
inset: self.inset.to_taffy(rem_size),
size: self.size.to_taffy(rem_size),
min_size: self.min_size.to_taffy(rem_size),
max_size: self.max_size.to_taffy(rem_size),
aspect_ratio: self.aspect_ratio,
margin: self.margin.to_taffy(rem_size),
padding: self.padding.to_taffy(rem_size),
border: self.border_widths.to_taffy(rem_size),
align_items: self.align_items.map(|x| x.into()),
align_self: self.align_self.map(|x| x.into()),
align_content: self.align_content.map(|x| x.into()),
justify_content: self.justify_content.map(|x| x.into()),
gap: self.gap.to_taffy(rem_size),
flex_direction: self.flex_direction.into(),
flex_wrap: self.flex_wrap.into(),
flex_basis: self.flex_basis.to_taffy(rem_size),
flex_grow: self.flex_grow,
flex_shrink: self.flex_shrink,
grid_template_rows: to_grid_repeat(&self.grid_rows),
grid_template_columns: to_grid_repeat(&self.grid_cols),
grid_row: self
.grid_location
.as_ref()
.map(|location| to_grid_line(&location.row))
.unwrap_or_default(),
grid_column: self
.grid_location
.as_ref()
.map(|location| to_grid_line(&location.column))
.unwrap_or_default(),
..Default::default()
}
}
}
impl ToTaffy<taffy::style::LengthPercentageAuto> for Length {
fn to_taffy(&self, rem_size: Pixels) -> taffy::prelude::LengthPercentageAuto {
match self {
Length::Definite(length) => length.to_taffy(rem_size),
Length::Auto => taffy::prelude::LengthPercentageAuto::auto(),
}
}
}
impl ToTaffy<taffy::style::Dimension> for Length {
fn to_taffy(&self, rem_size: Pixels) -> taffy::prelude::Dimension {
match self {
Length::Definite(length) => length.to_taffy(rem_size),
Length::Auto => taffy::prelude::Dimension::auto(),
}
}
}
impl ToTaffy<taffy::style::LengthPercentage> for DefiniteLength {
fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentage {
match self {
DefiniteLength::Absolute(length) => match length {
AbsoluteLength::Pixels(pixels) => {
taffy::style::LengthPercentage::length(pixels.into())
}
AbsoluteLength::Rems(rems) => {
taffy::style::LengthPercentage::length((*rems * rem_size).into())
}
},
DefiniteLength::Fraction(fraction) => {
taffy::style::LengthPercentage::percent(*fraction)
}
}
}
}
impl ToTaffy<taffy::style::LengthPercentageAuto> for DefiniteLength {
fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentageAuto {
match self {
DefiniteLength::Absolute(length) => match length {
AbsoluteLength::Pixels(pixels) => {
taffy::style::LengthPercentageAuto::length(pixels.into())
}
AbsoluteLength::Rems(rems) => {
taffy::style::LengthPercentageAuto::length((*rems * rem_size).into())
}
},
DefiniteLength::Fraction(fraction) => {
taffy::style::LengthPercentageAuto::percent(*fraction)
}
}
}
}
impl ToTaffy<taffy::style::Dimension> for DefiniteLength {
fn to_taffy(&self, rem_size: Pixels) -> taffy::style::Dimension {
match self {
DefiniteLength::Absolute(length) => match length {
AbsoluteLength::Pixels(pixels) => taffy::style::Dimension::length(pixels.into()),
AbsoluteLength::Rems(rems) => {
taffy::style::Dimension::length((*rems * rem_size).into())
}
},
DefiniteLength::Fraction(fraction) => taffy::style::Dimension::percent(*fraction),
}
}
}
impl ToTaffy<taffy::style::LengthPercentage> for AbsoluteLength {
fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentage {
match self {
AbsoluteLength::Pixels(pixels) => taffy::style::LengthPercentage::length(pixels.into()),
AbsoluteLength::Rems(rems) => {
taffy::style::LengthPercentage::length((*rems * rem_size).into())
}
}
}
}
impl<T, T2> From<TaffyPoint<T>> for Point<T2>
where
T: Into<T2>,
T2: Clone + Debug + Default + PartialEq,
{
fn from(point: TaffyPoint<T>) -> Point<T2> {
Point {
x: point.x.into(),
y: point.y.into(),
}
}
}
impl<T, T2> From<Point<T>> for TaffyPoint<T2>
where
T: Into<T2> + Clone + Debug + Default + PartialEq,
{
fn from(val: Point<T>) -> Self {
TaffyPoint {
x: val.x.into(),
y: val.y.into(),
}
}
}
impl<T, U> ToTaffy<TaffySize<U>> for Size<T>
where
T: ToTaffy<U> + Clone + Debug + Default + PartialEq,
{
fn to_taffy(&self, rem_size: Pixels) -> TaffySize<U> {
TaffySize {
width: self.width.to_taffy(rem_size),
height: self.height.to_taffy(rem_size),
}
}
}
impl<T, U> ToTaffy<TaffyRect<U>> for Edges<T>
where
T: ToTaffy<U> + Clone + Debug + Default + PartialEq,
{
fn to_taffy(&self, rem_size: Pixels) -> TaffyRect<U> {
TaffyRect {
top: self.top.to_taffy(rem_size),
right: self.right.to_taffy(rem_size),
bottom: self.bottom.to_taffy(rem_size),
left: self.left.to_taffy(rem_size),
}
}
}
impl<T, U> From<TaffySize<T>> for Size<U>
where
T: Into<U>,
U: Clone + Debug + Default + PartialEq,
{
fn from(taffy_size: TaffySize<T>) -> Self {
Size {
width: taffy_size.width.into(),
height: taffy_size.height.into(),
}
}
}
impl<T, U> From<Size<T>> for TaffySize<U>
where
T: Into<U> + Clone + Debug + Default + PartialEq,
{
fn from(size: Size<T>) -> Self {
TaffySize {
width: size.width.into(),
height: size.height.into(),
}
}
}
/// The space available for an element to be laid out in
#[derive(Copy, Clone, Default, Debug, Eq, PartialEq)]
pub enum AvailableSpace {
/// The amount of space available is the specified number of pixels
Definite(Pixels),
/// The amount of space available is indefinite and the node should be laid out under a min-content constraint
#[default]
MinContent,
/// The amount of space available is indefinite and the node should be laid out under a max-content constraint
MaxContent,
}
impl AvailableSpace {
/// Returns a `Size` with both width and height set to `AvailableSpace::MinContent`.
///
/// This function is useful when you want to create a `Size` with the minimum content constraints
/// for both dimensions.
///
/// # Examples
///
/// ```
/// let min_content_size = AvailableSpace::min_size();
/// assert_eq!(min_content_size.width, AvailableSpace::MinContent);
/// assert_eq!(min_content_size.height, AvailableSpace::MinContent);
/// ```
pub const fn min_size() -> Size<Self> {
Size {
width: Self::MinContent,
height: Self::MinContent,
}
}
}
impl From<AvailableSpace> for TaffyAvailableSpace {
fn from(space: AvailableSpace) -> TaffyAvailableSpace {
match space {
AvailableSpace::Definite(Pixels(value)) => TaffyAvailableSpace::Definite(value),
AvailableSpace::MinContent => TaffyAvailableSpace::MinContent,
AvailableSpace::MaxContent => TaffyAvailableSpace::MaxContent,
}
}
}
impl From<TaffyAvailableSpace> for AvailableSpace {
fn from(space: TaffyAvailableSpace) -> AvailableSpace {
match space {
TaffyAvailableSpace::Definite(value) => AvailableSpace::Definite(Pixels(value)),
TaffyAvailableSpace::MinContent => AvailableSpace::MinContent,
TaffyAvailableSpace::MaxContent => AvailableSpace::MaxContent,
}
}
}
impl From<Pixels> for AvailableSpace {
fn from(pixels: Pixels) -> Self {
AvailableSpace::Definite(pixels)
}
}
impl From<Size<Pixels>> for Size<AvailableSpace> {
fn from(size: Size<Pixels>) -> Self {
Size {
width: AvailableSpace::Definite(size.width),
height: AvailableSpace::Definite(size.height),
}
}
}