ZIm/crates/gpui/src/window/element_cx.rs
Mikayla Maki fd0071f2af
Add an animation to the LSP checking indicator (#9463)
Spinner go spinny.

Extra thanks to @kvark for helping me with the shaders.



https://github.com/zed-industries/zed/assets/2280405/9d5f4f4e-0d43-44d2-a089-5d69939938e9


Release Notes:

- Added a spinning animation to the LSP checking indicator

---------

Co-authored-by: Dzmitry Malyshau <kvark@fastmail.com>
2024-03-19 10:16:18 -07:00

1327 lines
49 KiB
Rust

//! The element context is the main interface for interacting with the frame during a paint.
//!
//! Elements are hierarchical and with a few exceptions the context accumulates state in a stack
//! as it processes all of the elements in the frame. The methods that interact with this stack
//! are generally marked with `with_*`, and take a callback to denote the region of code that
//! should be executed with that state.
//!
//! The other main interface is the `paint_*` family of methods, which push basic drawing commands
//! to the GPU. Everything in a GPUI app is drawn with these methods.
//!
//! There are also several internal methods that GPUI uses, such as [`ElementContext::with_element_state`]
//! to call the paint and layout methods on elements. These have been included as they're often useful
//! for taking manual control of the layouting or painting of specialized elements.
use std::{
any::{Any, TypeId},
borrow::{Borrow, BorrowMut, Cow},
mem,
ops::Range,
rc::Rc,
sync::Arc,
};
use anyhow::Result;
use collections::FxHashMap;
use derive_more::{Deref, DerefMut};
#[cfg(target_os = "macos")]
use media::core_video::CVImageBuffer;
use smallvec::SmallVec;
use crate::{
prelude::*, size, AnyElement, AnyTooltip, AppContext, AvailableSpace, Bounds, BoxShadow,
ContentMask, Corners, CursorStyle, DevicePixels, DispatchNodeId, DispatchPhase, DispatchTree,
DrawPhase, ElementId, ElementStateBox, EntityId, FocusHandle, FocusId, FontId, GlobalElementId,
GlyphId, Hsla, ImageData, InputHandler, IsZero, KeyContext, KeyEvent, LayoutId,
LineLayoutIndex, MonochromeSprite, MouseEvent, PaintQuad, Path, Pixels, PlatformInputHandler,
Point, PolychromeSprite, Quad, RenderGlyphParams, RenderImageParams, RenderSvgParams, Scene,
Shadow, SharedString, Size, StrikethroughStyle, Style, TextStyleRefinement,
TransformationMatrix, Underline, UnderlineStyle, Window, WindowContext, SUBPIXEL_VARIANTS,
};
pub(crate) type AnyMouseListener =
Box<dyn FnMut(&dyn Any, DispatchPhase, &mut ElementContext) + 'static>;
#[derive(Clone)]
pub(crate) struct CursorStyleRequest {
pub(crate) hitbox_id: HitboxId,
pub(crate) style: CursorStyle,
}
/// An identifier for a [Hitbox].
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct HitboxId(usize);
impl HitboxId {
/// Checks if the hitbox with this id is currently hovered.
pub fn is_hovered(&self, cx: &WindowContext) -> bool {
cx.window.mouse_hit_test.0.contains(self)
}
}
/// A rectangular region that potentially blocks hitboxes inserted prior.
/// See [ElementContext::insert_hitbox] for more details.
#[derive(Clone, Debug, Deref)]
pub struct Hitbox {
/// A unique identifier for the hitbox
pub id: HitboxId,
/// The bounds of the hitbox
#[deref]
pub bounds: Bounds<Pixels>,
/// Whether the hitbox occludes other hitboxes inserted prior.
pub opaque: bool,
}
impl Hitbox {
/// Checks if the hitbox is currently hovered.
pub fn is_hovered(&self, cx: &WindowContext) -> bool {
self.id.is_hovered(cx)
}
}
#[derive(Default, Eq, PartialEq)]
pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
pub(crate) struct DeferredDraw {
priority: usize,
parent_node: DispatchNodeId,
element_id_stack: GlobalElementId,
text_style_stack: Vec<TextStyleRefinement>,
element: Option<AnyElement>,
absolute_offset: Point<Pixels>,
layout_range: Range<AfterLayoutIndex>,
paint_range: Range<PaintIndex>,
}
pub(crate) struct Frame {
pub(crate) focus: Option<FocusId>,
pub(crate) window_active: bool,
pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
accessed_element_states: Vec<(GlobalElementId, TypeId)>,
pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
pub(crate) dispatch_tree: DispatchTree,
pub(crate) scene: Scene,
pub(crate) hitboxes: Vec<Hitbox>,
pub(crate) deferred_draws: Vec<DeferredDraw>,
pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
pub(crate) element_offset_stack: Vec<Point<Pixels>>,
pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
pub(crate) tooltip_requests: Vec<Option<AnyTooltip>>,
pub(crate) cursor_styles: Vec<CursorStyleRequest>,
#[cfg(any(test, feature = "test-support"))]
pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
}
#[derive(Clone, Default)]
pub(crate) struct AfterLayoutIndex {
hitboxes_index: usize,
tooltips_index: usize,
deferred_draws_index: usize,
dispatch_tree_index: usize,
accessed_element_states_index: usize,
line_layout_index: LineLayoutIndex,
}
#[derive(Clone, Default)]
pub(crate) struct PaintIndex {
scene_index: usize,
mouse_listeners_index: usize,
input_handlers_index: usize,
cursor_styles_index: usize,
accessed_element_states_index: usize,
line_layout_index: LineLayoutIndex,
}
impl Frame {
pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
Frame {
focus: None,
window_active: false,
element_states: FxHashMap::default(),
accessed_element_states: Vec::new(),
mouse_listeners: Vec::new(),
dispatch_tree,
scene: Scene::default(),
hitboxes: Vec::new(),
deferred_draws: Vec::new(),
content_mask_stack: Vec::new(),
element_offset_stack: Vec::new(),
input_handlers: Vec::new(),
tooltip_requests: Vec::new(),
cursor_styles: Vec::new(),
#[cfg(any(test, feature = "test-support"))]
debug_bounds: FxHashMap::default(),
}
}
pub(crate) fn clear(&mut self) {
self.element_states.clear();
self.accessed_element_states.clear();
self.mouse_listeners.clear();
self.dispatch_tree.clear();
self.scene.clear();
self.input_handlers.clear();
self.tooltip_requests.clear();
self.cursor_styles.clear();
self.hitboxes.clear();
self.deferred_draws.clear();
}
pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
let mut hit_test = HitTest::default();
for hitbox in self.hitboxes.iter().rev() {
if hitbox.bounds.contains(&position) {
hit_test.0.push(hitbox.id);
if hitbox.opaque {
break;
}
}
}
hit_test
}
pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
self.focus
.map(|focus_id| self.dispatch_tree.focus_path(focus_id))
.unwrap_or_default()
}
pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
for element_state_key in &self.accessed_element_states {
if let Some(element_state) = prev_frame.element_states.remove(element_state_key) {
self.element_states
.insert(element_state_key.clone(), element_state);
}
}
self.scene.finish();
}
}
/// This context is used for assisting in the implementation of the element trait
#[derive(Deref, DerefMut)]
pub struct ElementContext<'a> {
pub(crate) cx: WindowContext<'a>,
}
impl<'a> WindowContext<'a> {
/// Convert this window context into an ElementContext in this callback.
/// If you need to use this method, you're probably intermixing the imperative
/// and declarative APIs, which is not recommended.
pub fn with_element_context<R>(&mut self, f: impl FnOnce(&mut ElementContext) -> R) -> R {
f(&mut ElementContext {
cx: WindowContext::new(self.app, self.window),
})
}
}
impl<'a> Borrow<AppContext> for ElementContext<'a> {
fn borrow(&self) -> &AppContext {
self.cx.app
}
}
impl<'a> BorrowMut<AppContext> for ElementContext<'a> {
fn borrow_mut(&mut self) -> &mut AppContext {
self.cx.borrow_mut()
}
}
impl<'a> Borrow<WindowContext<'a>> for ElementContext<'a> {
fn borrow(&self) -> &WindowContext<'a> {
&self.cx
}
}
impl<'a> BorrowMut<WindowContext<'a>> for ElementContext<'a> {
fn borrow_mut(&mut self) -> &mut WindowContext<'a> {
&mut self.cx
}
}
impl<'a> Borrow<Window> for ElementContext<'a> {
fn borrow(&self) -> &Window {
self.cx.window
}
}
impl<'a> BorrowMut<Window> for ElementContext<'a> {
fn borrow_mut(&mut self) -> &mut Window {
self.cx.borrow_mut()
}
}
impl<'a> Context for ElementContext<'a> {
type Result<T> = <WindowContext<'a> as Context>::Result<T>;
fn new_model<T: 'static>(
&mut self,
build_model: impl FnOnce(&mut crate::ModelContext<'_, T>) -> T,
) -> Self::Result<crate::Model<T>> {
self.cx.new_model(build_model)
}
fn update_model<T, R>(
&mut self,
handle: &crate::Model<T>,
update: impl FnOnce(&mut T, &mut crate::ModelContext<'_, T>) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.cx.update_model(handle, update)
}
fn read_model<T, R>(
&self,
handle: &crate::Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.cx.read_model(handle, read)
}
fn update_window<T, F>(&mut self, window: crate::AnyWindowHandle, f: F) -> Result<T>
where
F: FnOnce(crate::AnyView, &mut WindowContext<'_>) -> T,
{
self.cx.update_window(window, f)
}
fn read_window<T, R>(
&self,
window: &crate::WindowHandle<T>,
read: impl FnOnce(crate::View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
self.cx.read_window(window, read)
}
}
impl<'a> VisualContext for ElementContext<'a> {
fn new_view<V>(
&mut self,
build_view: impl FnOnce(&mut crate::ViewContext<'_, V>) -> V,
) -> Self::Result<crate::View<V>>
where
V: 'static + Render,
{
self.cx.new_view(build_view)
}
fn update_view<V: 'static, R>(
&mut self,
view: &crate::View<V>,
update: impl FnOnce(&mut V, &mut crate::ViewContext<'_, V>) -> R,
) -> Self::Result<R> {
self.cx.update_view(view, update)
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut crate::ViewContext<'_, V>) -> V,
) -> Self::Result<crate::View<V>>
where
V: 'static + Render,
{
self.cx.replace_root_view(build_view)
}
fn focus_view<V>(&mut self, view: &crate::View<V>) -> Self::Result<()>
where
V: crate::FocusableView,
{
self.cx.focus_view(view)
}
fn dismiss_view<V>(&mut self, view: &crate::View<V>) -> Self::Result<()>
where
V: crate::ManagedView,
{
self.cx.dismiss_view(view)
}
}
impl<'a> ElementContext<'a> {
pub(crate) fn draw_roots(&mut self) {
self.window.draw_phase = DrawPhase::Layout;
// Layout all root elements.
let mut root_element = self.window.root_view.as_ref().unwrap().clone().into_any();
root_element.layout(Point::default(), self.window.viewport_size.into(), self);
let mut prompt_element = None;
let mut active_drag_element = None;
let mut tooltip_element = None;
if let Some(prompt) = self.window.prompt.take() {
let mut element = prompt.view.any_view().into_any();
element.layout(Point::default(), self.window.viewport_size.into(), self);
prompt_element = Some(element);
self.window.prompt = Some(prompt);
} else if let Some(active_drag) = self.app.active_drag.take() {
let mut element = active_drag.view.clone().into_any();
let offset = self.mouse_position() - active_drag.cursor_offset;
element.layout(offset, AvailableSpace::min_size(), self);
active_drag_element = Some(element);
self.app.active_drag = Some(active_drag);
} else if let Some(tooltip_request) =
self.window.next_frame.tooltip_requests.last().cloned()
{
let tooltip_request = tooltip_request.unwrap();
let mut element = tooltip_request.view.clone().into_any();
let offset = tooltip_request.cursor_offset;
element.layout(offset, AvailableSpace::min_size(), self);
tooltip_element = Some(element);
}
let mut sorted_deferred_draws =
(0..self.window.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
sorted_deferred_draws.sort_by_key(|ix| self.window.next_frame.deferred_draws[*ix].priority);
self.layout_deferred_draws(&sorted_deferred_draws);
self.window.mouse_hit_test = self.window.next_frame.hit_test(self.window.mouse_position);
// Now actually paint the elements.
self.window.draw_phase = DrawPhase::Paint;
root_element.paint(self);
if let Some(mut prompt_element) = prompt_element {
prompt_element.paint(self)
} else if let Some(mut drag_element) = active_drag_element {
drag_element.paint(self);
} else if let Some(mut tooltip_element) = tooltip_element {
tooltip_element.paint(self);
}
self.paint_deferred_draws(&sorted_deferred_draws);
}
fn layout_deferred_draws(&mut self, deferred_draw_indices: &[usize]) {
assert_eq!(self.window.element_id_stack.len(), 0);
let mut deferred_draws = mem::take(&mut self.window.next_frame.deferred_draws);
for deferred_draw_ix in deferred_draw_indices {
let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
self.window.element_id_stack = deferred_draw.element_id_stack.clone();
self.window.text_style_stack = deferred_draw.text_style_stack.clone();
self.window
.next_frame
.dispatch_tree
.set_active_node(deferred_draw.parent_node);
let layout_start = self.after_layout_index();
if let Some(element) = deferred_draw.element.as_mut() {
self.with_absolute_element_offset(deferred_draw.absolute_offset, |cx| {
element.after_layout(cx)
});
} else {
self.reuse_after_layout(deferred_draw.layout_range.clone());
}
let layout_end = self.after_layout_index();
deferred_draw.layout_range = layout_start..layout_end;
}
assert_eq!(
self.window.next_frame.deferred_draws.len(),
0,
"cannot call defer_draw during deferred drawing"
);
self.window.next_frame.deferred_draws = deferred_draws;
self.window.element_id_stack.clear();
self.window.text_style_stack.clear();
}
fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize]) {
assert_eq!(self.window.element_id_stack.len(), 0);
let mut deferred_draws = mem::take(&mut self.window.next_frame.deferred_draws);
for deferred_draw_ix in deferred_draw_indices {
let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
self.window.element_id_stack = deferred_draw.element_id_stack.clone();
self.window
.next_frame
.dispatch_tree
.set_active_node(deferred_draw.parent_node);
let paint_start = self.paint_index();
if let Some(element) = deferred_draw.element.as_mut() {
element.paint(self);
} else {
self.reuse_paint(deferred_draw.paint_range.clone());
}
let paint_end = self.paint_index();
deferred_draw.paint_range = paint_start..paint_end;
}
self.window.next_frame.deferred_draws = deferred_draws;
self.window.element_id_stack.clear();
}
pub(crate) fn after_layout_index(&self) -> AfterLayoutIndex {
AfterLayoutIndex {
hitboxes_index: self.window.next_frame.hitboxes.len(),
tooltips_index: self.window.next_frame.tooltip_requests.len(),
deferred_draws_index: self.window.next_frame.deferred_draws.len(),
dispatch_tree_index: self.window.next_frame.dispatch_tree.len(),
accessed_element_states_index: self.window.next_frame.accessed_element_states.len(),
line_layout_index: self.window.text_system.layout_index(),
}
}
pub(crate) fn reuse_after_layout(&mut self, range: Range<AfterLayoutIndex>) {
let window = &mut self.window;
window.next_frame.hitboxes.extend(
window.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
.iter()
.cloned(),
);
window.next_frame.tooltip_requests.extend(
window.rendered_frame.tooltip_requests
[range.start.tooltips_index..range.end.tooltips_index]
.iter_mut()
.map(|request| request.take()),
);
window.next_frame.accessed_element_states.extend(
window.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
..range.end.accessed_element_states_index]
.iter()
.cloned(),
);
window
.text_system
.reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
let reused_subtree = window.next_frame.dispatch_tree.reuse_subtree(
range.start.dispatch_tree_index..range.end.dispatch_tree_index,
&mut window.rendered_frame.dispatch_tree,
);
window.next_frame.deferred_draws.extend(
window.rendered_frame.deferred_draws
[range.start.deferred_draws_index..range.end.deferred_draws_index]
.iter()
.map(|deferred_draw| DeferredDraw {
parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
element_id_stack: deferred_draw.element_id_stack.clone(),
text_style_stack: deferred_draw.text_style_stack.clone(),
priority: deferred_draw.priority,
element: None,
absolute_offset: deferred_draw.absolute_offset,
layout_range: deferred_draw.layout_range.clone(),
paint_range: deferred_draw.paint_range.clone(),
}),
);
}
pub(crate) fn paint_index(&self) -> PaintIndex {
PaintIndex {
scene_index: self.window.next_frame.scene.len(),
mouse_listeners_index: self.window.next_frame.mouse_listeners.len(),
input_handlers_index: self.window.next_frame.input_handlers.len(),
cursor_styles_index: self.window.next_frame.cursor_styles.len(),
accessed_element_states_index: self.window.next_frame.accessed_element_states.len(),
line_layout_index: self.window.text_system.layout_index(),
}
}
pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
let window = &mut self.cx.window;
window.next_frame.cursor_styles.extend(
window.rendered_frame.cursor_styles
[range.start.cursor_styles_index..range.end.cursor_styles_index]
.iter()
.cloned(),
);
window.next_frame.input_handlers.extend(
window.rendered_frame.input_handlers
[range.start.input_handlers_index..range.end.input_handlers_index]
.iter_mut()
.map(|handler| handler.take()),
);
window.next_frame.mouse_listeners.extend(
window.rendered_frame.mouse_listeners
[range.start.mouse_listeners_index..range.end.mouse_listeners_index]
.iter_mut()
.map(|listener| listener.take()),
);
window.next_frame.accessed_element_states.extend(
window.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
..range.end.accessed_element_states_index]
.iter()
.cloned(),
);
window
.text_system
.reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
window.next_frame.scene.replay(
range.start.scene_index..range.end.scene_index,
&window.rendered_frame.scene,
);
}
/// Push a text style onto the stack, and call a function with that style active.
/// Use [`AppContext::text_style`] to get the current, combined text style.
pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
if let Some(style) = style {
self.window.text_style_stack.push(style);
let result = f(self);
self.window.text_style_stack.pop();
result
} else {
f(self)
}
}
/// Updates the cursor style at the platform level.
pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
self.window
.next_frame
.cursor_styles
.push(CursorStyleRequest {
hitbox_id: hitbox.id,
style,
});
}
/// Sets a tooltip to be rendered for the upcoming frame
pub fn set_tooltip(&mut self, tooltip: AnyTooltip) {
self.window.next_frame.tooltip_requests.push(Some(tooltip));
}
/// Pushes the given element id onto the global stack and invokes the given closure
/// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
/// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
/// used to associate state with identified elements across separate frames.
pub fn with_element_id<R>(
&mut self,
id: Option<impl Into<ElementId>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if let Some(id) = id.map(Into::into) {
let window = self.window_mut();
window.element_id_stack.push(id);
let result = f(self);
let window: &mut Window = self.borrow_mut();
window.element_id_stack.pop();
result
} else {
f(self)
}
}
/// Invoke the given function with the given content mask after intersecting it
/// with the current mask.
pub fn with_content_mask<R>(
&mut self,
mask: Option<ContentMask<Pixels>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if let Some(mask) = mask {
let mask = mask.intersect(&self.content_mask());
self.window_mut().next_frame.content_mask_stack.push(mask);
let result = f(self);
self.window_mut().next_frame.content_mask_stack.pop();
result
} else {
f(self)
}
}
/// Updates the global element offset relative to the current offset. This is used to implement
/// scrolling.
pub fn with_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if offset.is_zero() {
return f(self);
};
let abs_offset = self.element_offset() + offset;
self.with_absolute_element_offset(abs_offset, f)
}
/// Updates the global element offset based on the given offset. This is used to implement
/// drag handles and other manual painting of elements.
pub fn with_absolute_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
self.window_mut()
.next_frame
.element_offset_stack
.push(offset);
let result = f(self);
self.window_mut().next_frame.element_offset_stack.pop();
result
}
/// Obtain the current element offset.
pub fn element_offset(&self) -> Point<Pixels> {
self.window()
.next_frame
.element_offset_stack
.last()
.copied()
.unwrap_or_default()
}
/// Obtain the current content mask.
pub fn content_mask(&self) -> ContentMask<Pixels> {
self.window()
.next_frame
.content_mask_stack
.last()
.cloned()
.unwrap_or_else(|| ContentMask {
bounds: Bounds {
origin: Point::default(),
size: self.window().viewport_size,
},
})
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn rem_size(&self) -> Pixels {
self.window().rem_size
}
/// Updates or initializes state for an element with the given id that lives across multiple
/// frames. If an element with this ID existed in the rendered frame, its state will be passed
/// to the given closure. The state returned by the closure will be stored so it can be referenced
/// when drawing the next frame.
pub fn with_element_state<S, R>(
&mut self,
element_id: Option<ElementId>,
f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
) -> R
where
S: 'static,
{
let id_is_none = element_id.is_none();
self.with_element_id(element_id, |cx| {
if id_is_none {
let (result, state) = f(None, cx);
debug_assert!(state.is_none(), "you must not return an element state when passing None for the element id");
result
} else {
let global_id = cx.window().element_id_stack.clone();
let key = (global_id, TypeId::of::<S>());
cx.window.next_frame.accessed_element_states.push(key.clone());
if let Some(any) = cx
.window_mut()
.next_frame
.element_states
.remove(&key)
.or_else(|| {
cx.window_mut()
.rendered_frame
.element_states
.remove(&key)
})
{
let ElementStateBox {
inner,
#[cfg(debug_assertions)]
type_name
} = any;
// Using the extra inner option to avoid needing to reallocate a new box.
let mut state_box = inner
.downcast::<Option<S>>()
.map_err(|_| {
#[cfg(debug_assertions)]
{
anyhow::anyhow!(
"invalid element state type for id, requested_type {:?}, actual type: {:?}",
std::any::type_name::<S>(),
type_name
)
}
#[cfg(not(debug_assertions))]
{
anyhow::anyhow!(
"invalid element state type for id, requested_type {:?}",
std::any::type_name::<S>(),
)
}
})
.unwrap();
// Actual: Option<AnyElement> <- View
// Requested: () <- AnyElement
let state = state_box
.take()
.expect("reentrant call to with_element_state for the same state type and element id");
let (result, state) = f(Some(Some(state)), cx);
state_box.replace(state.expect("you must return "));
cx.window_mut()
.next_frame
.element_states
.insert(key, ElementStateBox {
inner: state_box,
#[cfg(debug_assertions)]
type_name
});
result
} else {
let (result, state) = f(Some(None), cx);
cx.window_mut()
.next_frame
.element_states
.insert(key,
ElementStateBox {
inner: Box::new(Some(state.expect("you must return Some<State> when you pass some element id"))),
#[cfg(debug_assertions)]
type_name: std::any::type_name::<S>()
}
);
result
}
}
})
}
/// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
/// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
/// with higher values being drawn on top.
pub fn defer_draw(
&mut self,
element: AnyElement,
absolute_offset: Point<Pixels>,
priority: usize,
) {
let window = &mut self.cx.window;
assert_eq!(
window.draw_phase,
DrawPhase::Layout,
"defer_draw can only be called during before_layout or after_layout"
);
let parent_node = window.next_frame.dispatch_tree.active_node_id().unwrap();
window.next_frame.deferred_draws.push(DeferredDraw {
parent_node,
element_id_stack: window.element_id_stack.clone(),
text_style_stack: window.text_style_stack.clone(),
priority,
element: Some(element),
absolute_offset,
layout_range: AfterLayoutIndex::default()..AfterLayoutIndex::default(),
paint_range: PaintIndex::default()..PaintIndex::default(),
});
}
/// Creates a new painting layer for the specified bounds. A "layer" is a batch
/// of geometry that are non-overlapping and have the same draw order. This is typically used
/// for performance reasons.
pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let clipped_bounds = bounds.intersect(&content_mask.bounds);
if !clipped_bounds.is_empty() {
self.window
.next_frame
.scene
.push_layer(clipped_bounds.scale(scale_factor));
}
let result = f(self);
if !clipped_bounds.is_empty() {
self.window.next_frame.scene.pop_layer();
}
result
}
/// Paint one or more drop shadows into the scene for the next frame at the current z-index.
pub fn paint_shadows(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
shadows: &[BoxShadow],
) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
for shadow in shadows {
let mut shadow_bounds = bounds;
shadow_bounds.origin += shadow.offset;
shadow_bounds.dilate(shadow.spread_radius);
self.window.next_frame.scene.insert_primitive(Shadow {
order: 0,
blur_radius: shadow.blur_radius.scale(scale_factor),
bounds: shadow_bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
corner_radii: corner_radii.scale(scale_factor),
color: shadow.color,
});
}
}
/// Paint one or more quads into the scene for the next frame at the current stacking context.
/// Quads are colored rectangular regions with an optional background, border, and corner radius.
/// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
pub fn paint_quad(&mut self, quad: PaintQuad) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Quad {
order: 0,
pad: 0,
bounds: quad.bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
background: quad.background,
border_color: quad.border_color,
corner_radii: quad.corner_radii.scale(scale_factor),
border_widths: quad.border_widths.scale(scale_factor),
});
}
/// Paint the given `Path` into the scene for the next frame at the current z-index.
pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
path.content_mask = content_mask;
path.color = color.into();
self.window
.next_frame
.scene
.insert_primitive(path.scale(scale_factor));
}
/// Paint an underline into the scene for the next frame at the current z-index.
pub fn paint_underline(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &UnderlineStyle,
) {
let scale_factor = self.scale_factor();
let height = if style.wavy {
style.thickness * 3.
} else {
style.thickness
};
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Underline {
order: 0,
pad: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
color: style.color.unwrap_or_default(),
thickness: style.thickness.scale(scale_factor),
wavy: style.wavy,
});
}
/// Paint a strikethrough into the scene for the next frame at the current z-index.
pub fn paint_strikethrough(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &StrikethroughStyle,
) {
let scale_factor = self.scale_factor();
let height = style.thickness;
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Underline {
order: 0,
pad: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
thickness: style.thickness.scale(scale_factor),
color: style.color.unwrap_or_default(),
wavy: false,
});
}
/// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
///
/// The y component of the origin is the baseline of the glyph.
/// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
/// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
/// This method is only useful if you need to paint a single glyph that has already been shaped.
pub fn paint_glyph(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let subpixel_variant = Point {
x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
};
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
subpixel_variant,
scale_factor,
is_emoji: false,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(MonochromeSprite {
order: 0,
pad: 0,
bounds,
content_mask,
color,
tile,
transformation: TransformationMatrix::unit(),
});
}
Ok(())
}
/// Paints an emoji glyph into the scene for the next frame at the current z-index.
///
/// The y component of the origin is the baseline of the glyph.
/// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
/// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
/// This method is only useful if you need to paint a single emoji that has already been shaped.
pub fn paint_emoji(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
// We don't render emojis with subpixel variants.
subpixel_variant: Default::default(),
scale_factor,
is_emoji: true,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(PolychromeSprite {
order: 0,
grayscale: false,
bounds,
corner_radii: Default::default(),
content_mask,
tile,
});
}
Ok(())
}
/// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
pub fn paint_svg(
&mut self,
bounds: Bounds<Pixels>,
path: SharedString,
transformation: TransformationMatrix,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
// Render the SVG at twice the size to get a higher quality result.
let params = RenderSvgParams {
path,
size: bounds
.size
.map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
};
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let bytes = self.svg_renderer.render(&params)?;
Ok((params.size, Cow::Owned(bytes)))
})?;
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(MonochromeSprite {
order: 0,
pad: 0,
bounds,
content_mask,
color,
tile,
transformation,
});
Ok(())
}
/// Paint an image into the scene for the next frame at the current z-index.
pub fn paint_image(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
data: Arc<ImageData>,
grayscale: bool,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let params = RenderImageParams { image_id: data.id };
let tile = self
.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
Ok((data.size(), Cow::Borrowed(data.as_bytes())))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let corner_radii = corner_radii.scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(PolychromeSprite {
order: 0,
grayscale,
bounds,
content_mask,
corner_radii,
tile,
});
Ok(())
}
/// Paint a surface into the scene for the next frame at the current z-index.
#[cfg(target_os = "macos")]
pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(crate::Surface {
order: 0,
bounds,
content_mask,
image_buffer,
});
}
#[must_use]
/// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
/// layout is being requested, along with the layout ids of any children. This method is called during
/// calls to the `Element::layout` trait method and enables any element to participate in layout.
pub fn request_layout(
&mut self,
style: &Style,
children: impl IntoIterator<Item = LayoutId>,
) -> LayoutId {
self.app.layout_id_buffer.clear();
self.app.layout_id_buffer.extend(children);
let rem_size = self.rem_size();
self.cx
.window
.layout_engine
.as_mut()
.unwrap()
.before_layout(style, rem_size, &self.cx.app.layout_id_buffer)
}
/// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
/// this variant takes a function that is invoked during layout so you can use arbitrary logic to
/// determine the element's size. One place this is used internally is when measuring text.
///
/// The given closure is invoked at layout time with the known dimensions and available space and
/// returns a `Size`.
pub fn request_measured_layout<
F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
+ 'static,
>(
&mut self,
style: Style,
measure: F,
) -> LayoutId {
let rem_size = self.rem_size();
self.window
.layout_engine
.as_mut()
.unwrap()
.request_measured_layout(style, rem_size, measure)
}
/// Compute the layout for the given id within the given available space.
/// This method is called for its side effect, typically by the framework prior to painting.
/// After calling it, you can request the bounds of the given layout node id or any descendant.
pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
let mut layout_engine = self.window.layout_engine.take().unwrap();
layout_engine.compute_layout(layout_id, available_space, self);
self.window.layout_engine = Some(layout_engine);
}
/// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
/// GPUI itself automatically in order to pass your element its `Bounds` automatically.
pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
let mut bounds = self
.window
.layout_engine
.as_mut()
.unwrap()
.layout_bounds(layout_id)
.map(Into::into);
bounds.origin += self.element_offset();
bounds
}
/// This method should be called during `after_layout`. You can use
/// the returned [Hitbox] during `paint` or in an event handler
/// to determine whether the inserted hitbox was the topmost.
pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
let content_mask = self.content_mask();
let window = &mut self.window;
let id = window.next_hitbox_id;
window.next_hitbox_id.0 += 1;
let hitbox = Hitbox {
id,
bounds: bounds.intersect(&content_mask.bounds),
opaque,
};
window.next_frame.hitboxes.push(hitbox.clone());
hitbox
}
/// Sets the key context for the current element. This context will be used to translate
/// keybindings into actions.
pub fn set_key_context(&mut self, context: KeyContext) {
self.window
.next_frame
.dispatch_tree
.set_key_context(context);
}
/// Sets the focus handle for the current element. This handle will be used to manage focus state
/// and keyboard event dispatch for the element.
pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle) {
self.window
.next_frame
.dispatch_tree
.set_focus_id(focus_handle.id);
}
/// Sets the view id for the current element, which will be used to manage view caching.
pub fn set_view_id(&mut self, view_id: EntityId) {
self.window.next_frame.dispatch_tree.set_view_id(view_id);
}
/// Get the last view id for the current element
pub fn parent_view_id(&mut self) -> Option<EntityId> {
self.window.next_frame.dispatch_tree.parent_view_id()
}
/// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
/// platform to receive textual input with proper integration with concerns such
/// as IME interactions. This handler will be active for the upcoming frame until the following frame is
/// rendered.
///
/// [element_input_handler]: crate::ElementInputHandler
pub fn handle_input(&mut self, focus_handle: &FocusHandle, input_handler: impl InputHandler) {
if focus_handle.is_focused(self) {
let cx = self.to_async();
self.window
.next_frame
.input_handlers
.push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
}
}
/// Register a mouse event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
pub fn on_mouse_event<Event: MouseEvent>(
&mut self,
mut handler: impl FnMut(&Event, DispatchPhase, &mut ElementContext) + 'static,
) {
self.window.next_frame.mouse_listeners.push(Some(Box::new(
move |event: &dyn Any, phase: DispatchPhase, cx: &mut ElementContext<'_>| {
if let Some(event) = event.downcast_ref() {
handler(event, phase, cx)
}
},
)));
}
/// Register a key event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using event handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_key_event<Event: KeyEvent>(
&mut self,
listener: impl Fn(&Event, DispatchPhase, &mut ElementContext) + 'static,
) {
self.window.next_frame.dispatch_tree.on_key_event(Rc::new(
move |event: &dyn Any, phase, cx: &mut ElementContext<'_>| {
if let Some(event) = event.downcast_ref::<Event>() {
listener(event, phase, cx)
}
},
));
}
}