ZIm/crates/gpui/src/window.rs
Marshall Bowers fdadbc7174
Add WithRemSize element (#11928)
This PR adds a new `WithRemSize` element to the `ui` crate.

This element can be used to create an element tree that has a different
rem size than the base window.

`WithRemSize` can be nested, allowing for subtrees that have a different
rem size than their parent and their children.

<img width="912" alt="Screenshot 2024-05-16 at 2 25 28 PM"
src="https://github.com/zed-industries/zed/assets/1486634/f599cd9f-c101-496b-93e8-06e570fbf74f">

Release Notes:

- N/A
2024-05-16 14:37:55 -04:00

4681 lines
162 KiB
Rust

use crate::{
hash, point, prelude::*, px, size, transparent_black, Action, AnyDrag, AnyElement, AnyTooltip,
AnyView, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Bounds, BoxShadow,
Context, Corners, CursorStyle, DevicePixels, DispatchActionListener, DispatchNodeId,
DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten,
FontId, Global, GlobalElementId, GlyphId, Hsla, ImageData, InputHandler, IsZero, KeyBinding,
KeyContext, KeyDownEvent, KeyEvent, KeyMatch, KeymatchResult, Keystroke, KeystrokeEvent,
LayoutId, LineLayoutIndex, Model, ModelContext, Modifiers, ModifiersChangedEvent,
MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels,
PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler, PlatformWindow, Point,
PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams,
RenderSvgParams, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style,
SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
TransformationMatrix, Underline, UnderlineStyle, View, VisualContext, WeakView,
WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowOptions, WindowParams,
WindowTextSystem, SUBPIXEL_VARIANTS,
};
use anyhow::{anyhow, Context as _, Result};
use collections::{FxHashMap, FxHashSet};
use derive_more::{Deref, DerefMut};
use futures::channel::oneshot;
use futures::{future::Shared, FutureExt};
#[cfg(target_os = "macos")]
use media::core_video::CVImageBuffer;
use parking_lot::RwLock;
use refineable::Refineable;
use slotmap::SlotMap;
use smallvec::SmallVec;
use std::{
any::{Any, TypeId},
borrow::{Borrow, BorrowMut, Cow},
cell::{Cell, RefCell},
cmp,
fmt::{Debug, Display},
future::Future,
hash::{Hash, Hasher},
marker::PhantomData,
mem,
ops::Range,
rc::Rc,
sync::{
atomic::{AtomicUsize, Ordering::SeqCst},
Arc, Weak,
},
time::{Duration, Instant},
};
use util::post_inc;
use util::{measure, ResultExt};
mod prompts;
pub use prompts::*;
pub(crate) const DEFAULT_WINDOW_SIZE: Size<DevicePixels> =
size(DevicePixels(1024), DevicePixels(700));
/// Represents the two different phases when dispatching events.
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
pub enum DispatchPhase {
/// After the capture phase comes the bubble phase, in which mouse event listeners are
/// invoked front to back and keyboard event listeners are invoked from the focused element
/// to the root of the element tree. This is the phase you'll most commonly want to use when
/// registering event listeners.
#[default]
Bubble,
/// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
/// listeners are invoked from the root of the tree downward toward the focused element. This phase
/// is used for special purposes such as clearing the "pressed" state for click events. If
/// you stop event propagation during this phase, you need to know what you're doing. Handlers
/// outside of the immediate region may rely on detecting non-local events during this phase.
Capture,
}
impl DispatchPhase {
/// Returns true if this represents the "bubble" phase.
pub fn bubble(self) -> bool {
self == DispatchPhase::Bubble
}
/// Returns true if this represents the "capture" phase.
pub fn capture(self) -> bool {
self == DispatchPhase::Capture
}
}
type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
struct FocusEvent {
previous_focus_path: SmallVec<[FocusId; 8]>,
current_focus_path: SmallVec<[FocusId; 8]>,
}
slotmap::new_key_type! {
/// A globally unique identifier for a focusable element.
pub struct FocusId;
}
thread_local! {
/// 8MB wasn't quite enough...
pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
}
impl FocusId {
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
cx.window.focus == Some(*self)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
cx.focused()
.map_or(false, |focused| self.contains(focused.id, cx))
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
let focused = cx.focused();
focused.map_or(false, |focused| focused.id.contains(*self, cx))
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
cx.window
.rendered_frame
.dispatch_tree
.focus_contains(*self, other)
}
}
/// A handle which can be used to track and manipulate the focused element in a window.
pub struct FocusHandle {
pub(crate) id: FocusId,
handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
}
impl std::fmt::Debug for FocusHandle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("FocusHandle({:?})", self.id))
}
}
impl FocusHandle {
pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
let id = handles.write().insert(AtomicUsize::new(1));
Self {
id,
handles: handles.clone(),
}
}
pub(crate) fn for_id(
id: FocusId,
handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
) -> Option<Self> {
let lock = handles.read();
let ref_count = lock.get(id)?;
if ref_count.load(SeqCst) == 0 {
None
} else {
ref_count.fetch_add(1, SeqCst);
Some(Self {
id,
handles: handles.clone(),
})
}
}
/// Converts this focus handle into a weak variant, which does not prevent it from being released.
pub fn downgrade(&self) -> WeakFocusHandle {
WeakFocusHandle {
id: self.id,
handles: Arc::downgrade(&self.handles),
}
}
/// Moves the focus to the element associated with this handle.
pub fn focus(&self, cx: &mut WindowContext) {
cx.focus(self)
}
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
self.id.is_focused(cx)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
self.id.contains_focused(cx)
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
self.id.within_focused(cx)
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
self.id.contains(other.id, cx)
}
/// Dispatch an action on the element that rendered this focus handle
pub fn dispatch_action(&self, action: &dyn Action, cx: &mut WindowContext) {
if let Some(node_id) = cx
.window
.rendered_frame
.dispatch_tree
.focusable_node_id(self.id)
{
cx.dispatch_action_on_node(node_id, action)
}
}
}
impl Clone for FocusHandle {
fn clone(&self) -> Self {
Self::for_id(self.id, &self.handles).unwrap()
}
}
impl PartialEq for FocusHandle {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for FocusHandle {}
impl Drop for FocusHandle {
fn drop(&mut self) {
self.handles
.read()
.get(self.id)
.unwrap()
.fetch_sub(1, SeqCst);
}
}
/// A weak reference to a focus handle.
#[derive(Clone, Debug)]
pub struct WeakFocusHandle {
pub(crate) id: FocusId,
handles: Weak<RwLock<SlotMap<FocusId, AtomicUsize>>>,
}
impl WeakFocusHandle {
/// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
pub fn upgrade(&self) -> Option<FocusHandle> {
let handles = self.handles.upgrade()?;
FocusHandle::for_id(self.id, &handles)
}
}
impl PartialEq for WeakFocusHandle {
fn eq(&self, other: &WeakFocusHandle) -> bool {
self.id == other.id
}
}
impl Eq for WeakFocusHandle {}
impl PartialEq<FocusHandle> for WeakFocusHandle {
fn eq(&self, other: &FocusHandle) -> bool {
self.id == other.id
}
}
impl PartialEq<WeakFocusHandle> for FocusHandle {
fn eq(&self, other: &WeakFocusHandle) -> bool {
self.id == other.id
}
}
/// FocusableView allows users of your view to easily
/// focus it (using cx.focus_view(view))
pub trait FocusableView: 'static + Render {
/// Returns the focus handle associated with this view.
fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
}
/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
/// where the lifecycle of the view is handled by another view.
pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
pub struct DismissEvent;
type FrameCallback = Box<dyn FnOnce(&mut WindowContext)>;
pub(crate) type AnyMouseListener =
Box<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
#[derive(Clone)]
pub(crate) struct CursorStyleRequest {
pub(crate) hitbox_id: HitboxId,
pub(crate) style: CursorStyle,
}
/// An identifier for a [Hitbox].
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct HitboxId(usize);
impl HitboxId {
/// Checks if the hitbox with this id is currently hovered.
pub fn is_hovered(&self, cx: &WindowContext) -> bool {
cx.window.mouse_hit_test.0.contains(self)
}
}
/// A rectangular region that potentially blocks hitboxes inserted prior.
/// See [WindowContext::insert_hitbox] for more details.
#[derive(Clone, Debug, Deref)]
pub struct Hitbox {
/// A unique identifier for the hitbox.
pub id: HitboxId,
/// The bounds of the hitbox.
#[deref]
pub bounds: Bounds<Pixels>,
/// The content mask when the hitbox was inserted.
pub content_mask: ContentMask<Pixels>,
/// Whether the hitbox occludes other hitboxes inserted prior.
pub opaque: bool,
}
impl Hitbox {
/// Checks if the hitbox is currently hovered.
pub fn is_hovered(&self, cx: &WindowContext) -> bool {
self.id.is_hovered(cx)
}
}
#[derive(Default, Eq, PartialEq)]
pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
/// An identifier for a tooltip.
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct TooltipId(usize);
impl TooltipId {
/// Checks if the tooltip is currently hovered.
pub fn is_hovered(&self, cx: &WindowContext) -> bool {
cx.window
.tooltip_bounds
.as_ref()
.map_or(false, |tooltip_bounds| {
tooltip_bounds.id == *self && tooltip_bounds.bounds.contains(&cx.mouse_position())
})
}
}
pub(crate) struct TooltipBounds {
id: TooltipId,
bounds: Bounds<Pixels>,
}
#[derive(Clone)]
pub(crate) struct TooltipRequest {
id: TooltipId,
tooltip: AnyTooltip,
}
pub(crate) struct DeferredDraw {
priority: usize,
parent_node: DispatchNodeId,
element_id_stack: SmallVec<[ElementId; 32]>,
text_style_stack: Vec<TextStyleRefinement>,
element: Option<AnyElement>,
absolute_offset: Point<Pixels>,
prepaint_range: Range<PrepaintStateIndex>,
paint_range: Range<PaintIndex>,
}
pub(crate) struct Frame {
pub(crate) focus: Option<FocusId>,
pub(crate) window_active: bool,
pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
accessed_element_states: Vec<(GlobalElementId, TypeId)>,
pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
pub(crate) dispatch_tree: DispatchTree,
pub(crate) scene: Scene,
pub(crate) hitboxes: Vec<Hitbox>,
pub(crate) deferred_draws: Vec<DeferredDraw>,
pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
pub(crate) cursor_styles: Vec<CursorStyleRequest>,
#[cfg(any(test, feature = "test-support"))]
pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
}
#[derive(Clone, Default)]
pub(crate) struct PrepaintStateIndex {
hitboxes_index: usize,
tooltips_index: usize,
deferred_draws_index: usize,
dispatch_tree_index: usize,
accessed_element_states_index: usize,
line_layout_index: LineLayoutIndex,
}
#[derive(Clone, Default)]
pub(crate) struct PaintIndex {
scene_index: usize,
mouse_listeners_index: usize,
input_handlers_index: usize,
cursor_styles_index: usize,
accessed_element_states_index: usize,
line_layout_index: LineLayoutIndex,
}
impl Frame {
pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
Frame {
focus: None,
window_active: false,
element_states: FxHashMap::default(),
accessed_element_states: Vec::new(),
mouse_listeners: Vec::new(),
dispatch_tree,
scene: Scene::default(),
hitboxes: Vec::new(),
deferred_draws: Vec::new(),
input_handlers: Vec::new(),
tooltip_requests: Vec::new(),
cursor_styles: Vec::new(),
#[cfg(any(test, feature = "test-support"))]
debug_bounds: FxHashMap::default(),
}
}
pub(crate) fn clear(&mut self) {
self.element_states.clear();
self.accessed_element_states.clear();
self.mouse_listeners.clear();
self.dispatch_tree.clear();
self.scene.clear();
self.input_handlers.clear();
self.tooltip_requests.clear();
self.cursor_styles.clear();
self.hitboxes.clear();
self.deferred_draws.clear();
}
pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
let mut hit_test = HitTest::default();
for hitbox in self.hitboxes.iter().rev() {
let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
if bounds.contains(&position) {
hit_test.0.push(hitbox.id);
if hitbox.opaque {
break;
}
}
}
hit_test
}
pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
self.focus
.map(|focus_id| self.dispatch_tree.focus_path(focus_id))
.unwrap_or_default()
}
pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
for element_state_key in &self.accessed_element_states {
if let Some((element_state_key, element_state)) =
prev_frame.element_states.remove_entry(element_state_key)
{
self.element_states.insert(element_state_key, element_state);
}
}
self.scene.finish();
}
}
// Holds the state for a specific window.
#[doc(hidden)]
pub struct Window {
pub(crate) handle: AnyWindowHandle,
pub(crate) removed: bool,
pub(crate) platform_window: Box<dyn PlatformWindow>,
display_id: DisplayId,
sprite_atlas: Arc<dyn PlatformAtlas>,
text_system: Arc<WindowTextSystem>,
rem_size: Pixels,
/// The stack of override values for the window's rem size.
///
/// This is used by `with_rem_size` to allow rendering an element tree with
/// a given rem size.
rem_size_override_stack: SmallVec<[Pixels; 8]>,
pub(crate) viewport_size: Size<Pixels>,
layout_engine: Option<TaffyLayoutEngine>,
pub(crate) root_view: Option<AnyView>,
pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
pub(crate) text_style_stack: Vec<TextStyleRefinement>,
pub(crate) element_offset_stack: Vec<Point<Pixels>>,
pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
pub(crate) rendered_frame: Frame,
pub(crate) next_frame: Frame,
pub(crate) next_hitbox_id: HitboxId,
pub(crate) next_tooltip_id: TooltipId,
pub(crate) tooltip_bounds: Option<TooltipBounds>,
next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
pub(crate) dirty_views: FxHashSet<EntityId>,
pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
focus_lost_listeners: SubscriberSet<(), AnyObserver>,
default_prevented: bool,
mouse_position: Point<Pixels>,
mouse_hit_test: HitTest,
modifiers: Modifiers,
scale_factor: f32,
bounds_observers: SubscriberSet<(), AnyObserver>,
appearance: WindowAppearance,
appearance_observers: SubscriberSet<(), AnyObserver>,
active: Rc<Cell<bool>>,
pub(crate) dirty: Rc<Cell<bool>>,
pub(crate) needs_present: Rc<Cell<bool>>,
pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
pub(crate) refreshing: bool,
pub(crate) draw_phase: DrawPhase,
activation_observers: SubscriberSet<(), AnyObserver>,
pub(crate) focus: Option<FocusId>,
focus_enabled: bool,
pending_input: Option<PendingInput>,
prompt: Option<RenderablePromptHandle>,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum DrawPhase {
None,
Prepaint,
Paint,
Focus,
}
#[derive(Default, Debug)]
struct PendingInput {
keystrokes: SmallVec<[Keystroke; 1]>,
bindings: SmallVec<[KeyBinding; 1]>,
focus: Option<FocusId>,
timer: Option<Task<()>>,
}
impl PendingInput {
fn input(&self) -> String {
self.keystrokes
.iter()
.flat_map(|k| k.ime_key.clone())
.collect::<Vec<String>>()
.join("")
}
fn used_by_binding(&self, binding: &KeyBinding) -> bool {
if self.keystrokes.is_empty() {
return true;
}
let keystroke = &self.keystrokes[0];
for candidate in keystroke.match_candidates() {
if binding.match_keystrokes(&[candidate]) == KeyMatch::Pending {
return true;
}
}
false
}
}
pub(crate) struct ElementStateBox {
pub(crate) inner: Box<dyn Any>,
#[cfg(debug_assertions)]
pub(crate) type_name: &'static str,
}
fn default_bounds(display_id: Option<DisplayId>, cx: &mut AppContext) -> Bounds<DevicePixels> {
const DEFAULT_WINDOW_OFFSET: Point<DevicePixels> = point(DevicePixels(0), DevicePixels(35));
cx.active_window()
.and_then(|w| w.update(cx, |_, cx| cx.bounds()).ok())
.map(|bounds| bounds.map_origin(|origin| origin + DEFAULT_WINDOW_OFFSET))
.unwrap_or_else(|| {
let display = display_id
.map(|id| cx.find_display(id))
.unwrap_or_else(|| cx.primary_display());
display
.map(|display| display.default_bounds())
.unwrap_or_else(|| {
Bounds::new(point(DevicePixels(0), DevicePixels(0)), DEFAULT_WINDOW_SIZE)
})
})
}
impl Window {
pub(crate) fn new(
handle: AnyWindowHandle,
options: WindowOptions,
cx: &mut AppContext,
) -> Self {
let WindowOptions {
window_bounds,
titlebar,
focus,
show,
kind,
is_movable,
display_id,
window_background,
app_id,
} = options;
let bounds = window_bounds
.map(|bounds| bounds.get_bounds())
.unwrap_or_else(|| default_bounds(display_id, cx));
let mut platform_window = cx.platform.open_window(
handle,
WindowParams {
bounds,
titlebar,
kind,
is_movable,
focus,
show,
display_id,
window_background,
},
);
let display_id = platform_window.display().id();
let sprite_atlas = platform_window.sprite_atlas();
let mouse_position = platform_window.mouse_position();
let modifiers = platform_window.modifiers();
let content_size = platform_window.content_size();
let scale_factor = platform_window.scale_factor();
let appearance = platform_window.appearance();
let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
let dirty = Rc::new(Cell::new(true));
let active = Rc::new(Cell::new(platform_window.is_active()));
let needs_present = Rc::new(Cell::new(false));
let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
if let Some(ref window_open_state) = window_bounds {
match window_open_state {
WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
WindowBounds::Maximized(_) => platform_window.zoom(),
WindowBounds::Windowed(_) => {}
}
}
platform_window.on_close(Box::new({
let mut cx = cx.to_async();
move || {
let _ = handle.update(&mut cx, |_, cx| cx.remove_window());
}
}));
platform_window.on_request_frame(Box::new({
let mut cx = cx.to_async();
let dirty = dirty.clone();
let active = active.clone();
let needs_present = needs_present.clone();
let next_frame_callbacks = next_frame_callbacks.clone();
let last_input_timestamp = last_input_timestamp.clone();
move || {
let next_frame_callbacks = next_frame_callbacks.take();
if !next_frame_callbacks.is_empty() {
handle
.update(&mut cx, |_, cx| {
for callback in next_frame_callbacks {
callback(cx);
}
})
.log_err();
}
// Keep presenting the current scene for 1 extra second since the
// last input to prevent the display from underclocking the refresh rate.
let needs_present = needs_present.get()
|| (active.get()
&& last_input_timestamp.get().elapsed() < Duration::from_secs(1));
if dirty.get() {
measure("frame duration", || {
handle
.update(&mut cx, |_, cx| {
cx.draw();
cx.present();
})
.log_err();
})
} else if needs_present {
handle.update(&mut cx, |_, cx| cx.present()).log_err();
}
handle
.update(&mut cx, |_, cx| {
cx.complete_frame();
})
.log_err();
}
}));
platform_window.on_resize(Box::new({
let mut cx = cx.to_async();
move |_, _| {
handle
.update(&mut cx, |_, cx| cx.bounds_changed())
.log_err();
}
}));
platform_window.on_moved(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.bounds_changed())
.log_err();
}
}));
platform_window.on_appearance_changed(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.appearance_changed())
.log_err();
}
}));
platform_window.on_active_status_change(Box::new({
let mut cx = cx.to_async();
move |active| {
handle
.update(&mut cx, |_, cx| {
cx.window.active.set(active);
cx.window
.activation_observers
.clone()
.retain(&(), |callback| callback(cx));
cx.refresh();
})
.log_err();
}
}));
platform_window.on_input({
let mut cx = cx.to_async();
Box::new(move |event| {
handle
.update(&mut cx, |_, cx| cx.dispatch_event(event))
.log_err()
.unwrap_or(DispatchEventResult::default())
})
});
if let Some(app_id) = app_id {
platform_window.set_app_id(&app_id);
}
Window {
handle,
removed: false,
platform_window,
display_id,
sprite_atlas,
text_system,
rem_size: px(16.),
rem_size_override_stack: SmallVec::new(),
viewport_size: content_size,
layout_engine: Some(TaffyLayoutEngine::new()),
root_view: None,
element_id_stack: SmallVec::default(),
text_style_stack: Vec::new(),
element_offset_stack: Vec::new(),
content_mask_stack: Vec::new(),
requested_autoscroll: None,
rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
next_frame_callbacks,
next_hitbox_id: HitboxId::default(),
next_tooltip_id: TooltipId::default(),
tooltip_bounds: None,
dirty_views: FxHashSet::default(),
focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
focus_listeners: SubscriberSet::new(),
focus_lost_listeners: SubscriberSet::new(),
default_prevented: true,
mouse_position,
mouse_hit_test: HitTest::default(),
modifiers,
scale_factor,
bounds_observers: SubscriberSet::new(),
appearance,
appearance_observers: SubscriberSet::new(),
active,
dirty,
needs_present,
last_input_timestamp,
refreshing: false,
draw_phase: DrawPhase::None,
activation_observers: SubscriberSet::new(),
focus: None,
focus_enabled: true,
pending_input: None,
prompt: None,
}
}
fn new_focus_listener(
&mut self,
value: AnyWindowFocusListener,
) -> (Subscription, impl FnOnce()) {
self.focus_listeners.insert((), value)
}
}
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub(crate) struct DispatchEventResult {
pub propagate: bool,
pub default_prevented: bool,
}
/// Indicates which region of the window is visible. Content falling outside of this mask will not be
/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
/// to leave room to support more complex shapes in the future.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[repr(C)]
pub struct ContentMask<P: Clone + Default + Debug> {
/// The bounds
pub bounds: Bounds<P>,
}
impl ContentMask<Pixels> {
/// Scale the content mask's pixel units by the given scaling factor.
pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
ContentMask {
bounds: self.bounds.scale(factor),
}
}
/// Intersect the content mask with the given content mask.
pub fn intersect(&self, other: &Self) -> Self {
let bounds = self.bounds.intersect(&other.bounds);
ContentMask { bounds }
}
}
/// Provides access to application state in the context of a single window. Derefs
/// to an [`AppContext`], so you can also pass a [`WindowContext`] to any method that takes
/// an [`AppContext`] and call any [`AppContext`] methods.
pub struct WindowContext<'a> {
pub(crate) app: &'a mut AppContext,
pub(crate) window: &'a mut Window,
}
impl<'a> WindowContext<'a> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
Self { app, window }
}
/// Obtain a handle to the window that belongs to this context.
pub fn window_handle(&self) -> AnyWindowHandle {
self.window.handle
}
/// Mark the window as dirty, scheduling it to be redrawn on the next frame.
pub fn refresh(&mut self) {
if self.window.draw_phase == DrawPhase::None {
self.window.refreshing = true;
self.window.dirty.set(true);
}
}
/// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
/// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
pub fn notify(&mut self, view_id: EntityId) {
for view_id in self
.window
.rendered_frame
.dispatch_tree
.view_path(view_id)
.into_iter()
.rev()
{
if !self.window.dirty_views.insert(view_id) {
break;
}
}
if self.window.draw_phase == DrawPhase::None {
self.window.dirty.set(true);
self.app.push_effect(Effect::Notify { emitter: view_id });
}
}
/// Close this window.
pub fn remove_window(&mut self) {
self.window.removed = true;
}
/// Obtain a new [`FocusHandle`], which allows you to track and manipulate the keyboard focus
/// for elements rendered within this window.
pub fn focus_handle(&mut self) -> FocusHandle {
FocusHandle::new(&self.window.focus_handles)
}
/// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
pub fn focused(&self) -> Option<FocusHandle> {
self.window
.focus
.and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
}
/// Move focus to the element associated with the given [`FocusHandle`].
pub fn focus(&mut self, handle: &FocusHandle) {
if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
return;
}
self.window.focus = Some(handle.id);
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
self.refresh();
}
/// Remove focus from all elements within this context's window.
pub fn blur(&mut self) {
if !self.window.focus_enabled {
return;
}
self.window.focus = None;
self.refresh();
}
/// Blur the window and don't allow anything in it to be focused again.
pub fn disable_focus(&mut self) {
self.blur();
self.window.focus_enabled = false;
}
/// Accessor for the text system.
pub fn text_system(&self) -> &Arc<WindowTextSystem> {
&self.window.text_system
}
/// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
pub fn text_style(&self) -> TextStyle {
let mut style = TextStyle::default();
for refinement in &self.window.text_style_stack {
style.refine(refinement);
}
style
}
/// Check if the platform window is maximized
/// On some platforms (namely Windows) this is different than the bounds being the size of the display
pub fn is_maximized(&self) -> bool {
self.window.platform_window.is_maximized()
}
/// Return the `WindowBounds` to indicate that how a window should be opened
/// after it has been closed
pub fn window_bounds(&self) -> WindowBounds {
self.window.platform_window.window_bounds()
}
/// Dispatch the given action on the currently focused element.
pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
let focus_handle = self.focused();
let window = self.window.handle;
self.app.defer(move |cx| {
window
.update(cx, |_, cx| {
let node_id = focus_handle
.and_then(|handle| {
cx.window
.rendered_frame
.dispatch_tree
.focusable_node_id(handle.id)
})
.unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
cx.dispatch_action_on_node(node_id, action.as_ref());
})
.log_err();
})
}
pub(crate) fn dispatch_keystroke_observers(
&mut self,
event: &dyn Any,
action: Option<Box<dyn Action>>,
) {
let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
return;
};
self.keystroke_observers
.clone()
.retain(&(), move |callback| {
(callback)(
&KeystrokeEvent {
keystroke: key_down_event.keystroke.clone(),
action: action.as_ref().map(|action| action.boxed_clone()),
},
self,
);
true
});
}
pub(crate) fn clear_pending_keystrokes(&mut self) {
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
self.window
.next_frame
.dispatch_tree
.clear_pending_keystrokes();
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
self.app.defer(move |cx| {
handle.update(cx, |_, cx| f(cx)).ok();
});
}
/// Subscribe to events emitted by a model or view.
/// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
/// The callback will be invoked a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a window context for the current window.
pub fn subscribe<Emitter, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
) -> Subscription
where
Emitter: EventEmitter<Evt>,
E: Entity<Emitter>,
Evt: 'static,
{
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_subscription(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
let event = event.downcast_ref().expect("invalid event type");
on_event(handle, event, cx);
true
} else {
false
}
})
.unwrap_or(false)
}),
),
)
}
/// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
/// await points in async code.
pub fn to_async(&self) -> AsyncWindowContext {
AsyncWindowContext::new(self.app.to_async(), self.window.handle)
}
/// Schedule the given closure to be run directly after the current frame is rendered.
pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
RefCell::borrow_mut(&self.window.next_frame_callbacks).push(Box::new(callback));
}
/// Spawn the future returned by the given closure on the application thread pool.
/// The closure is provided a handle to the current window and an `AsyncWindowContext` for
/// use within your future.
pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
self.app
.spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
}
fn bounds_changed(&mut self) {
self.window.scale_factor = self.window.platform_window.scale_factor();
self.window.viewport_size = self.window.platform_window.content_size();
self.window.display_id = self.window.platform_window.display().id();
self.refresh();
self.window
.bounds_observers
.clone()
.retain(&(), |callback| callback(self));
}
/// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
pub fn bounds(&self) -> Bounds<DevicePixels> {
self.window.platform_window.bounds()
}
/// Returns whether or not the window is currently fullscreen
pub fn is_fullscreen(&self) -> bool {
self.window.platform_window.is_fullscreen()
}
fn appearance_changed(&mut self) {
self.window.appearance = self.window.platform_window.appearance();
self.window
.appearance_observers
.clone()
.retain(&(), |callback| callback(self));
}
/// Returns the appearance of the current window.
pub fn appearance(&self) -> WindowAppearance {
self.window.appearance
}
/// Returns the size of the drawable area within the window.
pub fn viewport_size(&self) -> Size<Pixels> {
self.window.viewport_size
}
/// Returns whether this window is focused by the operating system (receiving key events).
pub fn is_window_active(&self) -> bool {
self.window.active.get()
}
/// Toggle zoom on the window.
pub fn zoom_window(&self) {
self.window.platform_window.zoom();
}
/// Opens the native title bar context menu, useful when implementing client side decorations (Wayland only)
pub fn show_window_menu(&self, position: Point<Pixels>) {
self.window.platform_window.show_window_menu(position)
}
/// Tells the compositor to take control of window movement (Wayland only)
///
/// Events may not be received during a move operation.
pub fn start_system_move(&self) {
self.window.platform_window.start_system_move()
}
/// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
pub fn should_render_window_controls(&self) -> bool {
self.window.platform_window.should_render_window_controls()
}
/// Updates the window's title at the platform level.
pub fn set_window_title(&mut self, title: &str) {
self.window.platform_window.set_title(title);
}
/// Sets the application identifier.
pub fn set_app_id(&mut self, app_id: &str) {
self.window.platform_window.set_app_id(app_id);
}
/// Sets the window background appearance.
pub fn set_background_appearance(&mut self, background_appearance: WindowBackgroundAppearance) {
self.window
.platform_window
.set_background_appearance(background_appearance);
}
/// Mark the window as dirty at the platform level.
pub fn set_window_edited(&mut self, edited: bool) {
self.window.platform_window.set_edited(edited);
}
/// Determine the display on which the window is visible.
pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
self.platform
.displays()
.into_iter()
.find(|display| display.id() == self.window.display_id)
}
/// Show the platform character palette.
pub fn show_character_palette(&self) {
self.window.platform_window.show_character_palette();
}
/// The scale factor of the display associated with the window. For example, it could
/// return 2.0 for a "retina" display, indicating that each logical pixel should actually
/// be rendered as two pixels on screen.
pub fn scale_factor(&self) -> f32 {
self.window.scale_factor
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn rem_size(&self) -> Pixels {
self.window
.rem_size_override_stack
.last()
.copied()
.unwrap_or(self.window.rem_size)
}
/// Sets the size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
self.window.rem_size = rem_size.into();
}
/// Executes the provided function with the specified rem size.
///
/// This method must only be called as part of element drawing.
pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during request_layout, prepaint, or paint"
);
if let Some(rem_size) = rem_size {
self.window.rem_size_override_stack.push(rem_size.into());
let result = f(self);
self.window.rem_size_override_stack.pop();
result
} else {
f(self)
}
}
/// The line height associated with the current text style.
pub fn line_height(&self) -> Pixels {
let rem_size = self.rem_size();
let text_style = self.text_style();
text_style
.line_height
.to_pixels(text_style.font_size, rem_size)
}
/// Call to prevent the default action of an event. Currently only used to prevent
/// parent elements from becoming focused on mouse down.
pub fn prevent_default(&mut self) {
self.window.default_prevented = true;
}
/// Obtain whether default has been prevented for the event currently being dispatched.
pub fn default_prevented(&self) -> bool {
self.window.default_prevented
}
/// Determine whether the given action is available along the dispatch path to the currently focused element.
pub fn is_action_available(&self, action: &dyn Action) -> bool {
let target = self
.focused()
.and_then(|focused_handle| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focused_handle.id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
self.window
.rendered_frame
.dispatch_tree
.is_action_available(action, target)
}
/// The position of the mouse relative to the window.
pub fn mouse_position(&self) -> Point<Pixels> {
self.window.mouse_position
}
/// The current state of the keyboard's modifiers
pub fn modifiers(&self) -> Modifiers {
self.window.modifiers
}
fn complete_frame(&self) {
self.window.platform_window.completed_frame();
}
/// Produces a new frame and assigns it to `rendered_frame`. To actually show
/// the contents of the new [Scene], use [present].
#[profiling::function]
pub fn draw(&mut self) {
self.window.dirty.set(false);
self.window.requested_autoscroll = None;
// Restore the previously-used input handler.
if let Some(input_handler) = self.window.platform_window.take_input_handler() {
self.window
.rendered_frame
.input_handlers
.push(Some(input_handler));
}
self.draw_roots();
self.window.dirty_views.clear();
self.window
.next_frame
.dispatch_tree
.preserve_pending_keystrokes(
&mut self.window.rendered_frame.dispatch_tree,
self.window.focus,
);
self.window.next_frame.focus = self.window.focus;
self.window.next_frame.window_active = self.window.active.get();
// Register requested input handler with the platform window.
if let Some(input_handler) = self.window.next_frame.input_handlers.pop() {
self.window
.platform_window
.set_input_handler(input_handler.unwrap());
}
self.window.layout_engine.as_mut().unwrap().clear();
self.text_system().finish_frame();
self.window
.next_frame
.finish(&mut self.window.rendered_frame);
ELEMENT_ARENA.with_borrow_mut(|element_arena| {
let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
if percentage >= 80. {
log::warn!("elevated element arena occupation: {}.", percentage);
}
element_arena.clear();
});
self.window.draw_phase = DrawPhase::Focus;
let previous_focus_path = self.window.rendered_frame.focus_path();
let previous_window_active = self.window.rendered_frame.window_active;
mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
self.window.next_frame.clear();
let current_focus_path = self.window.rendered_frame.focus_path();
let current_window_active = self.window.rendered_frame.window_active;
if previous_focus_path != current_focus_path
|| previous_window_active != current_window_active
{
if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
self.window
.focus_lost_listeners
.clone()
.retain(&(), |listener| listener(self));
}
let event = FocusEvent {
previous_focus_path: if previous_window_active {
previous_focus_path
} else {
Default::default()
},
current_focus_path: if current_window_active {
current_focus_path
} else {
Default::default()
},
};
self.window
.focus_listeners
.clone()
.retain(&(), |listener| listener(&event, self));
}
self.reset_cursor_style();
self.window.refreshing = false;
self.window.draw_phase = DrawPhase::None;
self.window.needs_present.set(true);
}
#[profiling::function]
fn present(&self) {
self.window
.platform_window
.draw(&self.window.rendered_frame.scene);
self.window.needs_present.set(false);
profiling::finish_frame!();
}
fn draw_roots(&mut self) {
self.window.draw_phase = DrawPhase::Prepaint;
self.window.tooltip_bounds.take();
// Layout all root elements.
let mut root_element = self.window.root_view.as_ref().unwrap().clone().into_any();
root_element.prepaint_as_root(Point::default(), self.window.viewport_size.into(), self);
let mut sorted_deferred_draws =
(0..self.window.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
sorted_deferred_draws.sort_by_key(|ix| self.window.next_frame.deferred_draws[*ix].priority);
self.prepaint_deferred_draws(&sorted_deferred_draws);
let mut prompt_element = None;
let mut active_drag_element = None;
let mut tooltip_element = None;
if let Some(prompt) = self.window.prompt.take() {
let mut element = prompt.view.any_view().into_any();
element.prepaint_as_root(Point::default(), self.window.viewport_size.into(), self);
prompt_element = Some(element);
self.window.prompt = Some(prompt);
} else if let Some(active_drag) = self.app.active_drag.take() {
let mut element = active_drag.view.clone().into_any();
let offset = self.mouse_position() - active_drag.cursor_offset;
element.prepaint_as_root(offset, AvailableSpace::min_size(), self);
active_drag_element = Some(element);
self.app.active_drag = Some(active_drag);
} else {
tooltip_element = self.prepaint_tooltip();
}
self.window.mouse_hit_test = self.window.next_frame.hit_test(self.window.mouse_position);
// Now actually paint the elements.
self.window.draw_phase = DrawPhase::Paint;
root_element.paint(self);
self.paint_deferred_draws(&sorted_deferred_draws);
if let Some(mut prompt_element) = prompt_element {
prompt_element.paint(self)
} else if let Some(mut drag_element) = active_drag_element {
drag_element.paint(self);
} else if let Some(mut tooltip_element) = tooltip_element {
tooltip_element.paint(self);
}
}
fn prepaint_tooltip(&mut self) -> Option<AnyElement> {
let tooltip_request = self.window.next_frame.tooltip_requests.last().cloned()?;
let tooltip_request = tooltip_request.unwrap();
let mut element = tooltip_request.tooltip.view.clone().into_any();
let mouse_position = tooltip_request.tooltip.mouse_position;
let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self);
let mut tooltip_bounds = Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
let window_bounds = Bounds {
origin: Point::default(),
size: self.viewport_size(),
};
if tooltip_bounds.right() > window_bounds.right() {
let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
if new_x >= Pixels::ZERO {
tooltip_bounds.origin.x = new_x;
} else {
tooltip_bounds.origin.x = cmp::max(
Pixels::ZERO,
tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
);
}
}
if tooltip_bounds.bottom() > window_bounds.bottom() {
let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
if new_y >= Pixels::ZERO {
tooltip_bounds.origin.y = new_y;
} else {
tooltip_bounds.origin.y = cmp::max(
Pixels::ZERO,
tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
);
}
}
self.with_absolute_element_offset(tooltip_bounds.origin, |cx| element.prepaint(cx));
self.window.tooltip_bounds = Some(TooltipBounds {
id: tooltip_request.id,
bounds: tooltip_bounds,
});
Some(element)
}
fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize]) {
assert_eq!(self.window.element_id_stack.len(), 0);
let mut deferred_draws = mem::take(&mut self.window.next_frame.deferred_draws);
for deferred_draw_ix in deferred_draw_indices {
let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
self.window
.element_id_stack
.clone_from(&deferred_draw.element_id_stack);
self.window
.text_style_stack
.clone_from(&deferred_draw.text_style_stack);
self.window
.next_frame
.dispatch_tree
.set_active_node(deferred_draw.parent_node);
let prepaint_start = self.prepaint_index();
if let Some(element) = deferred_draw.element.as_mut() {
self.with_absolute_element_offset(deferred_draw.absolute_offset, |cx| {
element.prepaint(cx)
});
} else {
self.reuse_prepaint(deferred_draw.prepaint_range.clone());
}
let prepaint_end = self.prepaint_index();
deferred_draw.prepaint_range = prepaint_start..prepaint_end;
}
assert_eq!(
self.window.next_frame.deferred_draws.len(),
0,
"cannot call defer_draw during deferred drawing"
);
self.window.next_frame.deferred_draws = deferred_draws;
self.window.element_id_stack.clear();
self.window.text_style_stack.clear();
}
fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize]) {
assert_eq!(self.window.element_id_stack.len(), 0);
let mut deferred_draws = mem::take(&mut self.window.next_frame.deferred_draws);
for deferred_draw_ix in deferred_draw_indices {
let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
self.window
.element_id_stack
.clone_from(&deferred_draw.element_id_stack);
self.window
.next_frame
.dispatch_tree
.set_active_node(deferred_draw.parent_node);
let paint_start = self.paint_index();
if let Some(element) = deferred_draw.element.as_mut() {
element.paint(self);
} else {
self.reuse_paint(deferred_draw.paint_range.clone());
}
let paint_end = self.paint_index();
deferred_draw.paint_range = paint_start..paint_end;
}
self.window.next_frame.deferred_draws = deferred_draws;
self.window.element_id_stack.clear();
}
pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
PrepaintStateIndex {
hitboxes_index: self.window.next_frame.hitboxes.len(),
tooltips_index: self.window.next_frame.tooltip_requests.len(),
deferred_draws_index: self.window.next_frame.deferred_draws.len(),
dispatch_tree_index: self.window.next_frame.dispatch_tree.len(),
accessed_element_states_index: self.window.next_frame.accessed_element_states.len(),
line_layout_index: self.window.text_system.layout_index(),
}
}
pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
let window = &mut self.window;
window.next_frame.hitboxes.extend(
window.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
.iter()
.cloned(),
);
window.next_frame.tooltip_requests.extend(
window.rendered_frame.tooltip_requests
[range.start.tooltips_index..range.end.tooltips_index]
.iter_mut()
.map(|request| request.take()),
);
window.next_frame.accessed_element_states.extend(
window.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
..range.end.accessed_element_states_index]
.iter()
.map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
);
window
.text_system
.reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
let reused_subtree = window.next_frame.dispatch_tree.reuse_subtree(
range.start.dispatch_tree_index..range.end.dispatch_tree_index,
&mut window.rendered_frame.dispatch_tree,
);
window.next_frame.deferred_draws.extend(
window.rendered_frame.deferred_draws
[range.start.deferred_draws_index..range.end.deferred_draws_index]
.iter()
.map(|deferred_draw| DeferredDraw {
parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
element_id_stack: deferred_draw.element_id_stack.clone(),
text_style_stack: deferred_draw.text_style_stack.clone(),
priority: deferred_draw.priority,
element: None,
absolute_offset: deferred_draw.absolute_offset,
prepaint_range: deferred_draw.prepaint_range.clone(),
paint_range: deferred_draw.paint_range.clone(),
}),
);
}
pub(crate) fn paint_index(&self) -> PaintIndex {
PaintIndex {
scene_index: self.window.next_frame.scene.len(),
mouse_listeners_index: self.window.next_frame.mouse_listeners.len(),
input_handlers_index: self.window.next_frame.input_handlers.len(),
cursor_styles_index: self.window.next_frame.cursor_styles.len(),
accessed_element_states_index: self.window.next_frame.accessed_element_states.len(),
line_layout_index: self.window.text_system.layout_index(),
}
}
pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
let window = &mut self.window;
window.next_frame.cursor_styles.extend(
window.rendered_frame.cursor_styles
[range.start.cursor_styles_index..range.end.cursor_styles_index]
.iter()
.cloned(),
);
window.next_frame.input_handlers.extend(
window.rendered_frame.input_handlers
[range.start.input_handlers_index..range.end.input_handlers_index]
.iter_mut()
.map(|handler| handler.take()),
);
window.next_frame.mouse_listeners.extend(
window.rendered_frame.mouse_listeners
[range.start.mouse_listeners_index..range.end.mouse_listeners_index]
.iter_mut()
.map(|listener| listener.take()),
);
window.next_frame.accessed_element_states.extend(
window.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
..range.end.accessed_element_states_index]
.iter()
.map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
);
window
.text_system
.reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
window.next_frame.scene.replay(
range.start.scene_index..range.end.scene_index,
&window.rendered_frame.scene,
);
}
/// Push a text style onto the stack, and call a function with that style active.
/// Use [`AppContext::text_style`] to get the current, combined text style. This method
/// should only be called as part of element drawing.
pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during request_layout, prepaint, or paint"
);
if let Some(style) = style {
self.window.text_style_stack.push(style);
let result = f(self);
self.window.text_style_stack.pop();
result
} else {
f(self)
}
}
/// Updates the cursor style at the platform level. This method should only be called
/// during the prepaint phase of element drawing.
pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window
.next_frame
.cursor_styles
.push(CursorStyleRequest {
hitbox_id: hitbox.id,
style,
});
}
/// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
/// during the paint phase of element drawing.
pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
let id = TooltipId(post_inc(&mut self.window.next_tooltip_id.0));
self.window
.next_frame
.tooltip_requests
.push(Some(TooltipRequest { id, tooltip }));
id
}
/// Invoke the given function with the given content mask after intersecting it
/// with the current mask. This method should only be called during element drawing.
pub fn with_content_mask<R>(
&mut self,
mask: Option<ContentMask<Pixels>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during request_layout, prepaint, or paint"
);
if let Some(mask) = mask {
let mask = mask.intersect(&self.content_mask());
self.window_mut().content_mask_stack.push(mask);
let result = f(self);
self.window_mut().content_mask_stack.pop();
result
} else {
f(self)
}
}
/// Updates the global element offset relative to the current offset. This is used to implement
/// scrolling. This method should only be called during the prepaint phase of element drawing.
pub fn with_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, or prepaint"
);
if offset.is_zero() {
return f(self);
};
let abs_offset = self.element_offset() + offset;
self.with_absolute_element_offset(abs_offset, f)
}
/// Updates the global element offset based on the given offset. This is used to implement
/// drag handles and other manual painting of elements. This method should only be called during
/// the prepaint phase of element drawing.
pub fn with_absolute_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, or prepaint"
);
self.window_mut().element_offset_stack.push(offset);
let result = f(self);
self.window_mut().element_offset_stack.pop();
result
}
/// Perform prepaint on child elements in a "retryable" manner, so that any side effects
/// of prepaints can be discarded before prepainting again. This is used to support autoscroll
/// where we need to prepaint children to detect the autoscroll bounds, then adjust the
/// element offset and prepaint again. See [`List`] for an example. This method should only be
/// called during the prepaint phase of element drawing.
pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
let index = self.prepaint_index();
let result = f(self);
if result.is_err() {
self.window
.next_frame
.hitboxes
.truncate(index.hitboxes_index);
self.window
.next_frame
.tooltip_requests
.truncate(index.tooltips_index);
self.window
.next_frame
.deferred_draws
.truncate(index.deferred_draws_index);
self.window
.next_frame
.dispatch_tree
.truncate(index.dispatch_tree_index);
self.window
.next_frame
.accessed_element_states
.truncate(index.accessed_element_states_index);
self.window
.text_system
.truncate_layouts(index.line_layout_index);
}
result
}
/// When you call this method during [`prepaint`], containing elements will attempt to
/// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
/// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
/// that supports this method being called on the elements it contains. This method should only be
/// called during the prepaint phase of element drawing.
pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
self.window.requested_autoscroll = Some(bounds);
}
/// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
/// described in [`request_autoscroll`].
pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
self.window.requested_autoscroll.take()
}
/// Remove an asset from GPUI's cache
pub fn remove_cached_asset<A: Asset + 'static>(
&mut self,
source: &A::Source,
) -> Option<A::Output> {
self.asset_cache.remove::<A>(source)
}
/// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
/// Your view will be re-drawn once the asset has finished loading.
///
/// Note that the multiple calls to this method will only result in one `Asset::load` call.
/// The results of that call will be cached, and returned on subsequent uses of this API.
///
/// Use [Self::remove_cached_asset] to reload your asset.
pub fn use_cached_asset<A: Asset + 'static>(
&mut self,
source: &A::Source,
) -> Option<A::Output> {
self.asset_cache.get::<A>(source).or_else(|| {
if let Some(asset) = self.use_asset::<A>(source) {
self.asset_cache
.insert::<A>(source.to_owned(), asset.clone());
Some(asset)
} else {
None
}
})
}
/// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
/// Your view will be re-drawn once the asset has finished loading.
///
/// Note that the multiple calls to this method will only result in one `Asset::load` call at a
/// time.
///
/// This asset will not be cached by default, see [Self::use_cached_asset]
pub fn use_asset<A: Asset + 'static>(&mut self, source: &A::Source) -> Option<A::Output> {
let asset_id = (TypeId::of::<A>(), hash(source));
let mut is_first = false;
let task = self
.loading_assets
.remove(&asset_id)
.map(|boxed_task| *boxed_task.downcast::<Shared<Task<A::Output>>>().unwrap())
.unwrap_or_else(|| {
is_first = true;
let future = A::load(source.clone(), self);
let task = self.background_executor().spawn(future).shared();
task
});
task.clone().now_or_never().or_else(|| {
if is_first {
let parent_id = self.parent_view_id();
self.spawn({
let task = task.clone();
|mut cx| async move {
task.await;
cx.on_next_frame(move |cx| {
if let Some(parent_id) = parent_id {
cx.notify(parent_id)
} else {
cx.refresh()
}
});
}
})
.detach();
}
self.loading_assets.insert(asset_id, Box::new(task));
None
})
}
/// Obtain the current element offset. This method should only be called during the
/// prepaint phase of element drawing.
pub fn element_offset(&self) -> Point<Pixels> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
self.window()
.element_offset_stack
.last()
.copied()
.unwrap_or_default()
}
/// Obtain the current content mask. This method should only be called during element drawing.
pub fn content_mask(&self) -> ContentMask<Pixels> {
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during prepaint, or paint"
);
self.window()
.content_mask_stack
.last()
.cloned()
.unwrap_or_else(|| ContentMask {
bounds: Bounds {
origin: Point::default(),
size: self.window().viewport_size,
},
})
}
/// Provide elements in the called function with a new namespace in which their identiers must be unique.
/// This can be used within a custom element to distinguish multiple sets of child elements.
pub fn with_element_namespace<R>(
&mut self,
element_id: impl Into<ElementId>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
self.window.element_id_stack.push(element_id.into());
let result = f(self);
self.window.element_id_stack.pop();
result
}
/// Updates or initializes state for an element with the given id that lives across multiple
/// frames. If an element with this ID existed in the rendered frame, its state will be passed
/// to the given closure. The state returned by the closure will be stored so it can be referenced
/// when drawing the next frame. This method should only be called as part of element drawing.
pub fn with_element_state<S, R>(
&mut self,
global_id: &GlobalElementId,
f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
) -> R
where
S: 'static,
{
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during request_layout, prepaint, or paint"
);
let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
self.window
.next_frame
.accessed_element_states
.push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
if let Some(any) = self
.window
.next_frame
.element_states
.remove(&key)
.or_else(|| self.window.rendered_frame.element_states.remove(&key))
{
let ElementStateBox {
inner,
#[cfg(debug_assertions)]
type_name,
} = any;
// Using the extra inner option to avoid needing to reallocate a new box.
let mut state_box = inner
.downcast::<Option<S>>()
.map_err(|_| {
#[cfg(debug_assertions)]
{
anyhow::anyhow!(
"invalid element state type for id, requested {:?}, actual: {:?}",
std::any::type_name::<S>(),
type_name
)
}
#[cfg(not(debug_assertions))]
{
anyhow::anyhow!(
"invalid element state type for id, requested {:?}",
std::any::type_name::<S>(),
)
}
})
.unwrap();
let state = state_box.take().expect(
"reentrant call to with_element_state for the same state type and element id",
);
let (result, state) = f(Some(state), self);
state_box.replace(state);
self.window.next_frame.element_states.insert(
key,
ElementStateBox {
inner: state_box,
#[cfg(debug_assertions)]
type_name,
},
);
result
} else {
let (result, state) = f(None, self);
self.window.next_frame.element_states.insert(
key,
ElementStateBox {
inner: Box::new(Some(state)),
#[cfg(debug_assertions)]
type_name: std::any::type_name::<S>(),
},
);
result
}
}
/// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
/// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
/// when the element is guaranteed to have an id.
pub fn with_optional_element_state<S, R>(
&mut self,
global_id: Option<&GlobalElementId>,
f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
) -> R
where
S: 'static,
{
debug_assert!(
matches!(
self.window.draw_phase,
DrawPhase::Prepaint | DrawPhase::Paint
),
"this method can only be called during request_layout, prepaint, or paint"
);
if let Some(global_id) = global_id {
self.with_element_state(global_id, |state, cx| {
let (result, state) = f(Some(state), cx);
let state =
state.expect("you must return some state when you pass some element id");
(result, state)
})
} else {
let (result, state) = f(None, self);
debug_assert!(
state.is_none(),
"you must not return an element state when passing None for the global id"
);
result
}
}
/// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
/// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
/// with higher values being drawn on top.
///
/// This method should only be called as part of the prepaint phase of element drawing.
pub fn defer_draw(
&mut self,
element: AnyElement,
absolute_offset: Point<Pixels>,
priority: usize,
) {
let window = &mut self.window;
debug_assert_eq!(
window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout or prepaint"
);
let parent_node = window.next_frame.dispatch_tree.active_node_id().unwrap();
window.next_frame.deferred_draws.push(DeferredDraw {
parent_node,
element_id_stack: window.element_id_stack.clone(),
text_style_stack: window.text_style_stack.clone(),
priority,
element: Some(element),
absolute_offset,
prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
paint_range: PaintIndex::default()..PaintIndex::default(),
});
}
/// Creates a new painting layer for the specified bounds. A "layer" is a batch
/// of geometry that are non-overlapping and have the same draw order. This is typically used
/// for performance reasons.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let clipped_bounds = bounds.intersect(&content_mask.bounds);
if !clipped_bounds.is_empty() {
self.window
.next_frame
.scene
.push_layer(clipped_bounds.scale(scale_factor));
}
let result = f(self);
if !clipped_bounds.is_empty() {
self.window.next_frame.scene.pop_layer();
}
result
}
/// Paint one or more drop shadows into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_shadows(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
shadows: &[BoxShadow],
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
for shadow in shadows {
let mut shadow_bounds = bounds;
shadow_bounds.origin += shadow.offset;
shadow_bounds.dilate(shadow.spread_radius);
self.window.next_frame.scene.insert_primitive(Shadow {
order: 0,
blur_radius: shadow.blur_radius.scale(scale_factor),
bounds: shadow_bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
corner_radii: corner_radii.scale(scale_factor),
color: shadow.color,
});
}
}
/// Paint one or more quads into the scene for the next frame at the current stacking context.
/// Quads are colored rectangular regions with an optional background, border, and corner radius.
/// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_quad(&mut self, quad: PaintQuad) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Quad {
order: 0,
pad: 0,
bounds: quad.bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
background: quad.background,
border_color: quad.border_color,
corner_radii: quad.corner_radii.scale(scale_factor),
border_widths: quad.border_widths.scale(scale_factor),
});
}
/// Paint the given `Path` into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
path.content_mask = content_mask;
path.color = color.into();
self.window
.next_frame
.scene
.insert_primitive(path.scale(scale_factor));
}
/// Paint an underline into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_underline(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &UnderlineStyle,
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let height = if style.wavy {
style.thickness * 3.
} else {
style.thickness
};
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Underline {
order: 0,
pad: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
color: style.color.unwrap_or_default(),
thickness: style.thickness.scale(scale_factor),
wavy: style.wavy,
});
}
/// Paint a strikethrough into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_strikethrough(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &StrikethroughStyle,
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let height = style.thickness;
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
self.window.next_frame.scene.insert_primitive(Underline {
order: 0,
pad: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
thickness: style.thickness.scale(scale_factor),
color: style.color.unwrap_or_default(),
wavy: false,
});
}
/// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
///
/// The y component of the origin is the baseline of the glyph.
/// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
/// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
/// This method is only useful if you need to paint a single glyph that has already been shaped.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_glyph(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
color: Hsla,
) -> Result<()> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let subpixel_variant = Point {
x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
};
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
subpixel_variant,
scale_factor,
is_emoji: false,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(MonochromeSprite {
order: 0,
pad: 0,
bounds,
content_mask,
color,
tile,
transformation: TransformationMatrix::unit(),
});
}
Ok(())
}
/// Paints an emoji glyph into the scene for the next frame at the current z-index.
///
/// The y component of the origin is the baseline of the glyph.
/// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
/// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
/// This method is only useful if you need to paint a single emoji that has already been shaped.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_emoji(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
) -> Result<()> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
// We don't render emojis with subpixel variants.
subpixel_variant: Default::default(),
scale_factor,
is_emoji: true,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(PolychromeSprite {
order: 0,
grayscale: false,
bounds,
corner_radii: Default::default(),
content_mask,
tile,
});
}
Ok(())
}
/// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_svg(
&mut self,
bounds: Bounds<Pixels>,
path: SharedString,
transformation: TransformationMatrix,
color: Hsla,
) -> Result<()> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
// Render the SVG at twice the size to get a higher quality result.
let params = RenderSvgParams {
path,
size: bounds
.size
.map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
};
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let bytes = self.svg_renderer.render(&params)?;
Ok((params.size, Cow::Owned(bytes)))
})?;
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(MonochromeSprite {
order: 0,
pad: 0,
bounds,
content_mask,
color,
tile,
transformation,
});
Ok(())
}
/// Paint an image into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn paint_image(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
data: Arc<ImageData>,
grayscale: bool,
) -> Result<()> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let params = RenderImageParams { image_id: data.id };
let tile = self
.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
Ok((data.size(), Cow::Borrowed(data.as_bytes())))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let corner_radii = corner_radii.scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(PolychromeSprite {
order: 0,
grayscale,
bounds,
content_mask,
corner_radii,
tile,
});
Ok(())
}
/// Paint a surface into the scene for the next frame at the current z-index.
///
/// This method should only be called as part of the paint phase of element drawing.
#[cfg(target_os = "macos")]
pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let content_mask = self.content_mask().scale(scale_factor);
self.window
.next_frame
.scene
.insert_primitive(crate::Surface {
order: 0,
bounds,
content_mask,
image_buffer,
});
}
#[must_use]
/// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
/// layout is being requested, along with the layout ids of any children. This method is called during
/// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
///
/// This method should only be called as part of the request_layout or prepaint phase of element drawing.
pub fn request_layout(
&mut self,
style: Style,
children: impl IntoIterator<Item = LayoutId>,
) -> LayoutId {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, or prepaint"
);
self.app.layout_id_buffer.clear();
self.app.layout_id_buffer.extend(children);
let rem_size = self.rem_size();
self.window.layout_engine.as_mut().unwrap().request_layout(
style,
rem_size,
&self.app.layout_id_buffer,
)
}
/// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
/// this variant takes a function that is invoked during layout so you can use arbitrary logic to
/// determine the element's size. One place this is used internally is when measuring text.
///
/// The given closure is invoked at layout time with the known dimensions and available space and
/// returns a `Size`.
///
/// This method should only be called as part of the request_layout or prepaint phase of element drawing.
pub fn request_measured_layout<
F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
+ 'static,
>(
&mut self,
style: Style,
measure: F,
) -> LayoutId {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, or prepaint"
);
let rem_size = self.rem_size();
self.window
.layout_engine
.as_mut()
.unwrap()
.request_measured_layout(style, rem_size, measure)
}
/// Compute the layout for the given id within the given available space.
/// This method is called for its side effect, typically by the framework prior to painting.
/// After calling it, you can request the bounds of the given layout node id or any descendant.
///
/// This method should only be called as part of the prepaint phase of element drawing.
pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, or prepaint"
);
let mut layout_engine = self.window.layout_engine.take().unwrap();
layout_engine.compute_layout(layout_id, available_space, self);
self.window.layout_engine = Some(layout_engine);
}
/// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
/// GPUI itself automatically in order to pass your element its `Bounds` automatically.
///
/// This method should only be called as part of element drawing.
pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during request_layout, prepaint, or paint"
);
let mut bounds = self
.window
.layout_engine
.as_mut()
.unwrap()
.layout_bounds(layout_id)
.map(Into::into);
bounds.origin += self.element_offset();
bounds
}
/// This method should be called during `prepaint`. You can use
/// the returned [Hitbox] during `paint` or in an event handler
/// to determine whether the inserted hitbox was the topmost.
///
/// This method should only be called as part of the prepaint phase of element drawing.
pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
let content_mask = self.content_mask();
let window = &mut self.window;
let id = window.next_hitbox_id;
window.next_hitbox_id.0 += 1;
let hitbox = Hitbox {
id,
bounds,
content_mask,
opaque,
};
window.next_frame.hitboxes.push(hitbox.clone());
hitbox
}
/// Sets the key context for the current element. This context will be used to translate
/// keybindings into actions.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn set_key_context(&mut self, context: KeyContext) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window
.next_frame
.dispatch_tree
.set_key_context(context);
}
/// Sets the focus handle for the current element. This handle will be used to manage focus state
/// and keyboard event dispatch for the element.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window
.next_frame
.dispatch_tree
.set_focus_id(focus_handle.id);
}
/// Sets the view id for the current element, which will be used to manage view caching.
///
/// This method should only be called as part of element prepaint. We plan on removing this
/// method eventually when we solve some issues that require us to construct editor elements
/// directly instead of always using editors via views.
pub fn set_view_id(&mut self, view_id: EntityId) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Prepaint,
"this method can only be called during prepaint"
);
self.window.next_frame.dispatch_tree.set_view_id(view_id);
}
/// Get the last view id for the current element
pub fn parent_view_id(&mut self) -> Option<EntityId> {
self.window.next_frame.dispatch_tree.parent_view_id()
}
/// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
/// platform to receive textual input with proper integration with concerns such
/// as IME interactions. This handler will be active for the upcoming frame until the following frame is
/// rendered.
///
/// This method should only be called as part of the paint phase of element drawing.
///
/// [element_input_handler]: crate::ElementInputHandler
pub fn handle_input(&mut self, focus_handle: &FocusHandle, input_handler: impl InputHandler) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
if focus_handle.is_focused(self) {
let cx = self.to_async();
self.window
.next_frame
.input_handlers
.push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
}
}
/// Register a mouse event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn on_mouse_event<Event: MouseEvent>(
&mut self,
mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window.next_frame.mouse_listeners.push(Some(Box::new(
move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
if let Some(event) = event.downcast_ref() {
handler(event, phase, cx)
}
},
)));
}
/// Register a key event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using event handlers on elements unless you have
/// a specific need to register a global listener.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn on_key_event<Event: KeyEvent>(
&mut self,
listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window.next_frame.dispatch_tree.on_key_event(Rc::new(
move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
if let Some(event) = event.downcast_ref::<Event>() {
listener(event, phase, cx)
}
},
));
}
/// Register a modifiers changed event listener on the window for the next frame.
///
/// This is a fairly low-level method, so prefer using event handlers on elements unless you have
/// a specific need to register a global listener.
///
/// This method should only be called as part of the paint phase of element drawing.
pub fn on_modifiers_changed(
&mut self,
listener: impl Fn(&ModifiersChangedEvent, &mut WindowContext) + 'static,
) {
debug_assert_eq!(
self.window.draw_phase,
DrawPhase::Paint,
"this method can only be called during paint"
);
self.window
.next_frame
.dispatch_tree
.on_modifiers_changed(Rc::new(
move |event: &ModifiersChangedEvent, cx: &mut WindowContext<'_>| {
listener(event, cx)
},
));
}
fn reset_cursor_style(&self) {
// Set the cursor only if we're the active window.
if self.is_window_active() {
let style = self
.window
.rendered_frame
.cursor_styles
.iter()
.rev()
.find(|request| request.hitbox_id.is_hovered(self))
.map(|request| request.style)
.unwrap_or(CursorStyle::Arrow);
self.platform.set_cursor_style(style);
}
}
/// Dispatch a given keystroke as though the user had typed it.
/// You can create a keystroke with Keystroke::parse("").
pub fn dispatch_keystroke(&mut self, keystroke: Keystroke) -> bool {
let keystroke = keystroke.with_simulated_ime();
let result = self.dispatch_event(PlatformInput::KeyDown(KeyDownEvent {
keystroke: keystroke.clone(),
is_held: false,
}));
if !result.propagate {
return true;
}
if let Some(input) = keystroke.ime_key {
if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
input_handler.dispatch_input(&input, self);
self.window.platform_window.set_input_handler(input_handler);
return true;
}
}
false
}
/// Represent this action as a key binding string, to display in the UI.
pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
self.bindings_for_action(action)
.into_iter()
.next()
.map(|binding| {
binding
.keystrokes()
.iter()
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(" ")
})
.unwrap_or_else(|| action.name().to_string())
}
/// Dispatch a mouse or keyboard event on the window.
#[profiling::function]
pub fn dispatch_event(&mut self, event: PlatformInput) -> DispatchEventResult {
self.window.last_input_timestamp.set(Instant::now());
// Handlers may set this to false by calling `stop_propagation`.
self.app.propagate_event = true;
// Handlers may set this to true by calling `prevent_default`.
self.window.default_prevented = false;
let event = match event {
// Track the mouse position with our own state, since accessing the platform
// API for the mouse position can only occur on the main thread.
PlatformInput::MouseMove(mouse_move) => {
self.window.mouse_position = mouse_move.position;
self.window.modifiers = mouse_move.modifiers;
PlatformInput::MouseMove(mouse_move)
}
PlatformInput::MouseDown(mouse_down) => {
self.window.mouse_position = mouse_down.position;
self.window.modifiers = mouse_down.modifiers;
PlatformInput::MouseDown(mouse_down)
}
PlatformInput::MouseUp(mouse_up) => {
self.window.mouse_position = mouse_up.position;
self.window.modifiers = mouse_up.modifiers;
PlatformInput::MouseUp(mouse_up)
}
PlatformInput::MouseExited(mouse_exited) => {
self.window.modifiers = mouse_exited.modifiers;
PlatformInput::MouseExited(mouse_exited)
}
PlatformInput::ModifiersChanged(modifiers_changed) => {
self.window.modifiers = modifiers_changed.modifiers;
PlatformInput::ModifiersChanged(modifiers_changed)
}
PlatformInput::ScrollWheel(scroll_wheel) => {
self.window.mouse_position = scroll_wheel.position;
self.window.modifiers = scroll_wheel.modifiers;
PlatformInput::ScrollWheel(scroll_wheel)
}
// Translate dragging and dropping of external files from the operating system
// to internal drag and drop events.
PlatformInput::FileDrop(file_drop) => match file_drop {
FileDropEvent::Entered { position, paths } => {
self.window.mouse_position = position;
if self.active_drag.is_none() {
self.active_drag = Some(AnyDrag {
value: Box::new(paths.clone()),
view: self.new_view(|_| paths).into(),
cursor_offset: position,
});
}
PlatformInput::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Pending { position } => {
self.window.mouse_position = position;
PlatformInput::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Submit { position } => {
self.activate(true);
self.window.mouse_position = position;
PlatformInput::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position,
modifiers: Modifiers::default(),
click_count: 1,
})
}
FileDropEvent::Exited => {
self.active_drag.take();
PlatformInput::FileDrop(FileDropEvent::Exited)
}
},
PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
};
if let Some(any_mouse_event) = event.mouse_event() {
self.dispatch_mouse_event(any_mouse_event);
} else if let Some(any_key_event) = event.keyboard_event() {
self.dispatch_key_event(any_key_event);
}
DispatchEventResult {
propagate: self.app.propagate_event,
default_prevented: self.window.default_prevented,
}
}
fn dispatch_mouse_event(&mut self, event: &dyn Any) {
let hit_test = self.window.rendered_frame.hit_test(self.mouse_position());
if hit_test != self.window.mouse_hit_test {
self.window.mouse_hit_test = hit_test;
self.reset_cursor_style();
}
let mut mouse_listeners = mem::take(&mut self.window.rendered_frame.mouse_listeners);
// Capture phase, events bubble from back to front. Handlers for this phase are used for
// special purposes, such as detecting events outside of a given Bounds.
for listener in &mut mouse_listeners {
let listener = listener.as_mut().unwrap();
listener(event, DispatchPhase::Capture, self);
if !self.app.propagate_event {
break;
}
}
// Bubble phase, where most normal handlers do their work.
if self.app.propagate_event {
for listener in mouse_listeners.iter_mut().rev() {
let listener = listener.as_mut().unwrap();
listener(event, DispatchPhase::Bubble, self);
if !self.app.propagate_event {
break;
}
}
}
self.window.rendered_frame.mouse_listeners = mouse_listeners;
if self.has_active_drag() {
if event.is::<MouseMoveEvent>() {
// If this was a mouse move event, redraw the window so that the
// active drag can follow the mouse cursor.
self.refresh();
} else if event.is::<MouseUpEvent>() {
// If this was a mouse up event, cancel the active drag and redraw
// the window.
self.active_drag = None;
self.refresh();
}
}
}
fn dispatch_key_event(&mut self, event: &dyn Any) {
if self.window.dirty.get() {
self.draw();
}
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
let KeymatchResult { bindings, pending } = self
.window
.rendered_frame
.dispatch_tree
.dispatch_key(&key_down_event.keystroke, &dispatch_path);
if pending {
let mut currently_pending = self.window.pending_input.take().unwrap_or_default();
if currently_pending.focus.is_some() && currently_pending.focus != self.window.focus
{
currently_pending = PendingInput::default();
}
currently_pending.focus = self.window.focus;
currently_pending
.keystrokes
.push(key_down_event.keystroke.clone());
for binding in bindings {
currently_pending.bindings.push(binding);
}
currently_pending.timer = Some(self.spawn(|mut cx| async move {
cx.background_executor.timer(Duration::from_secs(1)).await;
cx.update(move |cx| {
cx.clear_pending_keystrokes();
let Some(currently_pending) = cx.window.pending_input.take() else {
return;
};
cx.replay_pending_input(currently_pending)
})
.log_err();
}));
self.window.pending_input = Some(currently_pending);
self.propagate_event = false;
return;
} else if let Some(currently_pending) = self.window.pending_input.take() {
if bindings
.iter()
.all(|binding| !currently_pending.used_by_binding(binding))
{
self.replay_pending_input(currently_pending)
}
}
if !bindings.is_empty() {
self.clear_pending_keystrokes();
}
self.propagate_event = true;
for binding in bindings {
self.dispatch_action_on_node(node_id, binding.action.as_ref());
if !self.propagate_event {
self.dispatch_keystroke_observers(event, Some(binding.action));
return;
}
}
}
self.dispatch_key_down_up_event(event, &dispatch_path);
if !self.propagate_event {
return;
}
self.dispatch_modifiers_changed_event(event, &dispatch_path);
if !self.propagate_event {
return;
}
self.dispatch_keystroke_observers(event, None);
}
fn dispatch_key_down_up_event(
&mut self,
event: &dyn Any,
dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
) {
// Capture phase
for node_id in dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for key_listener in node.key_listeners.clone() {
key_listener(event, DispatchPhase::Capture, self);
if !self.propagate_event {
return;
}
}
}
// Bubble phase
for node_id in dispatch_path.iter().rev() {
// Handle low level key events
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for key_listener in node.key_listeners.clone() {
key_listener(event, DispatchPhase::Bubble, self);
if !self.propagate_event {
return;
}
}
}
}
fn dispatch_modifiers_changed_event(
&mut self,
event: &dyn Any,
dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
) {
let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
return;
};
for node_id in dispatch_path.iter().rev() {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for listener in node.modifiers_changed_listeners.clone() {
listener(event, self);
if !self.propagate_event {
return;
}
}
}
}
/// Determine whether a potential multi-stroke key binding is in progress on this window.
pub fn has_pending_keystrokes(&self) -> bool {
self.window
.rendered_frame
.dispatch_tree
.has_pending_keystrokes()
}
fn replay_pending_input(&mut self, currently_pending: PendingInput) {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
if self.window.focus != currently_pending.focus {
return;
}
let input = currently_pending.input();
self.propagate_event = true;
for binding in currently_pending.bindings {
self.dispatch_action_on_node(node_id, binding.action.as_ref());
if !self.propagate_event {
return;
}
}
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
for keystroke in currently_pending.keystrokes {
let event = KeyDownEvent {
keystroke,
is_held: false,
};
self.dispatch_key_down_up_event(&event, &dispatch_path);
if !self.propagate_event {
return;
}
}
if !input.is_empty() {
if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
input_handler.dispatch_input(&input, self);
self.window.platform_window.set_input_handler(input_handler)
}
}
}
fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: &dyn Action) {
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
// Capture phase for global actions.
self.propagate_event = true;
if let Some(mut global_listeners) = self
.global_action_listeners
.remove(&action.as_any().type_id())
{
for listener in &global_listeners {
listener(action.as_any(), DispatchPhase::Capture, self);
if !self.propagate_event {
break;
}
}
global_listeners.extend(
self.global_action_listeners
.remove(&action.as_any().type_id())
.unwrap_or_default(),
);
self.global_action_listeners
.insert(action.as_any().type_id(), global_listeners);
}
if !self.propagate_event {
return;
}
// Capture phase for window actions.
for node_id in &dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
listener(any_action, DispatchPhase::Capture, self);
if !self.propagate_event {
return;
}
}
}
}
// Bubble phase for window actions.
for node_id in dispatch_path.iter().rev() {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
self.propagate_event = false; // Actions stop propagation by default during the bubble phase
listener(any_action, DispatchPhase::Bubble, self);
if !self.propagate_event {
return;
}
}
}
}
// Bubble phase for global actions.
if let Some(mut global_listeners) = self
.global_action_listeners
.remove(&action.as_any().type_id())
{
for listener in global_listeners.iter().rev() {
self.propagate_event = false; // Actions stop propagation by default during the bubble phase
listener(action.as_any(), DispatchPhase::Bubble, self);
if !self.propagate_event {
break;
}
}
global_listeners.extend(
self.global_action_listeners
.remove(&action.as_any().type_id())
.unwrap_or_default(),
);
self.global_action_listeners
.insert(action.as_any().type_id(), global_listeners);
}
}
/// Register the given handler to be invoked whenever the global of the given type
/// is updated.
pub fn observe_global<G: Global>(
&mut self,
f: impl Fn(&mut WindowContext<'_>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
);
self.app.defer(move |_| activate());
subscription
}
/// Focus the current window and bring it to the foreground at the platform level.
pub fn activate_window(&self) {
self.window.platform_window.activate();
}
/// Minimize the current window at the platform level.
pub fn minimize_window(&self) {
self.window.platform_window.minimize();
}
/// Toggle full screen status on the current window at the platform level.
pub fn toggle_fullscreen(&self) {
self.window.platform_window.toggle_fullscreen();
}
/// Present a platform dialog.
/// The provided message will be presented, along with buttons for each answer.
/// When a button is clicked, the returned Receiver will receive the index of the clicked button.
pub fn prompt(
&mut self,
level: PromptLevel,
message: &str,
detail: Option<&str>,
answers: &[&str],
) -> oneshot::Receiver<usize> {
let prompt_builder = self.app.prompt_builder.take();
let Some(prompt_builder) = prompt_builder else {
unreachable!("Re-entrant window prompting is not supported by GPUI");
};
let receiver = match &prompt_builder {
PromptBuilder::Default => self
.window
.platform_window
.prompt(level, message, detail, answers)
.unwrap_or_else(|| {
self.build_custom_prompt(&prompt_builder, level, message, detail, answers)
}),
PromptBuilder::Custom(_) => {
self.build_custom_prompt(&prompt_builder, level, message, detail, answers)
}
};
self.app.prompt_builder = Some(prompt_builder);
receiver
}
fn build_custom_prompt(
&mut self,
prompt_builder: &PromptBuilder,
level: PromptLevel,
message: &str,
detail: Option<&str>,
answers: &[&str],
) -> oneshot::Receiver<usize> {
let (sender, receiver) = oneshot::channel();
let handle = PromptHandle::new(sender);
let handle = (prompt_builder)(level, message, detail, answers, handle, self);
self.window.prompt = Some(handle);
receiver
}
/// Returns all available actions for the focused element.
pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
let mut actions = self
.window
.rendered_frame
.dispatch_tree
.available_actions(node_id);
for action_type in self.global_action_listeners.keys() {
if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
let action = self.actions.build_action_type(action_type).ok();
if let Some(action) = action {
actions.insert(ix, action);
}
}
}
actions
}
/// Returns key bindings that invoke the given action on the currently focused element.
pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
self.window
.rendered_frame
.dispatch_tree
.bindings_for_action(
action,
&self.window.rendered_frame.dispatch_tree.context_stack,
)
}
/// Returns any bindings that would invoke the given action on the given focus handle if it were focused.
pub fn bindings_for_action_in(
&self,
action: &dyn Action,
focus_handle: &FocusHandle,
) -> Vec<KeyBinding> {
let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
return vec![];
};
let context_stack: Vec<_> = dispatch_tree
.dispatch_path(node_id)
.into_iter()
.filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
.collect();
dispatch_tree.bindings_for_action(action, &context_stack)
}
/// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
pub fn listener_for<V: Render, E>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = view.downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
/// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
pub fn handler_for<V: Render>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
) -> impl Fn(&mut WindowContext) {
let view = view.downgrade();
move |cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, cx)).ok();
}
}
/// Register a callback that can interrupt the closing of the current window based the returned boolean.
/// If the callback returns false, the window won't be closed.
pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
let mut this = self.to_async();
self.window
.platform_window
.on_should_close(Box::new(move || this.update(|cx| f(cx)).unwrap_or(true)))
}
/// Register an action listener on the window for the next frame. The type of action
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using action handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
) {
self.window
.next_frame
.dispatch_tree
.on_action(action_type, Rc::new(listener));
}
}
#[cfg(target_os = "windows")]
impl WindowContext<'_> {
/// Returns the raw HWND handle for the window.
pub fn get_raw_handle(&self) -> windows::Win32::Foundation::HWND {
self.window.platform_window.get_raw_handle()
}
}
impl Context for WindowContext<'_> {
type Result<T> = T;
fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
where
T: 'static,
{
let slot = self.app.entities.reserve();
let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
self.entities.insert(slot, model)
}
fn reserve_model<T: 'static>(&mut self) -> Self::Result<crate::Reservation<T>> {
self.app.reserve_model()
}
fn insert_model<T: 'static>(
&mut self,
reservation: crate::Reservation<T>,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Self::Result<Model<T>> {
self.app.insert_model(reservation, build_model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
let mut entity = self.entities.lease(model);
let result = update(
&mut *entity,
&mut ModelContext::new(&mut *self.app, model.downgrade()),
);
self.entities.end_lease(entity);
result
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
let entity = self.entities.read(handle);
read(entity, &*self.app)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
if window == self.window.handle {
let root_view = self.window.root_view.clone().unwrap();
Ok(update(root_view, self))
} else {
window.update(self.app, update)
}
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
if window.any_handle == self.window.handle {
let root_view = self
.window
.root_view
.clone()
.unwrap()
.downcast::<T>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(read(root_view, self))
} else {
self.app.read_window(window, read)
}
}
}
impl VisualContext for WindowContext<'_> {
fn new_view<V>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let slot = self.app.entities.reserve();
let view = View {
model: slot.clone(),
};
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let entity = build_view_state(&mut cx);
cx.entities.insert(slot, entity);
// Non-generic part to avoid leaking SubscriberSet to invokers of `new_view`.
fn notify_observers(cx: &mut WindowContext, tid: TypeId, view: AnyView) {
cx.new_view_observers.clone().retain(&tid, |observer| {
let any_view = view.clone();
(observer)(any_view, cx);
true
});
}
notify_observers(self, TypeId::of::<V>(), AnyView::from(view.clone()));
view
}
/// Updates the given view. Prefer calling [`View::update`] instead, which calls this method.
fn update_view<T: 'static, R>(
&mut self,
view: &View<T>,
update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
) -> Self::Result<R> {
let mut lease = self.app.entities.lease(&view.model);
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, view);
let result = update(&mut *lease, &mut cx);
cx.app.entities.end_lease(lease);
result
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let view = self.new_view(build_view);
self.window.root_view = Some(view.clone().into());
self.refresh();
view
}
fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
self.update_view(view, |view, cx| {
view.focus_handle(cx).clone().focus(cx);
})
}
fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
where
V: ManagedView,
{
self.update_view(view, |_, cx| cx.emit(DismissEvent))
}
}
impl<'a> std::ops::Deref for WindowContext<'a> {
type Target = AppContext;
fn deref(&self) -> &Self::Target {
self.app
}
}
impl<'a> std::ops::DerefMut for WindowContext<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.app
}
}
impl<'a> Borrow<AppContext> for WindowContext<'a> {
fn borrow(&self) -> &AppContext {
self.app
}
}
impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
fn borrow_mut(&mut self) -> &mut AppContext {
self.app
}
}
/// This trait contains functionality that is shared across [`ViewContext`] and [`WindowContext`]
pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
#[doc(hidden)]
fn app_mut(&mut self) -> &mut AppContext {
self.borrow_mut()
}
#[doc(hidden)]
fn app(&self) -> &AppContext {
self.borrow()
}
#[doc(hidden)]
fn window(&self) -> &Window {
self.borrow()
}
#[doc(hidden)]
fn window_mut(&mut self) -> &mut Window {
self.borrow_mut()
}
}
impl Borrow<Window> for WindowContext<'_> {
fn borrow(&self) -> &Window {
self.window
}
}
impl BorrowMut<Window> for WindowContext<'_> {
fn borrow_mut(&mut self) -> &mut Window {
self.window
}
}
impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
/// Provides access to application state that is specialized for a particular [`View`].
/// Allows you to interact with focus, emit events, etc.
/// ViewContext also derefs to [`WindowContext`], giving you access to all of its methods as well.
/// When you call [`View::update`], you're passed a `&mut V` and an `&mut ViewContext<V>`.
pub struct ViewContext<'a, V> {
window_cx: WindowContext<'a>,
view: &'a View<V>,
}
impl<V> Borrow<AppContext> for ViewContext<'_, V> {
fn borrow(&self) -> &AppContext {
&*self.window_cx.app
}
}
impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut *self.window_cx.app
}
}
impl<V> Borrow<Window> for ViewContext<'_, V> {
fn borrow(&self) -> &Window {
&*self.window_cx.window
}
}
impl<V> BorrowMut<Window> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut Window {
&mut *self.window_cx.window
}
}
impl<'a, V: 'static> ViewContext<'a, V> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
Self {
window_cx: WindowContext::new(app, window),
view,
}
}
/// Get the entity_id of this view.
pub fn entity_id(&self) -> EntityId {
self.view.entity_id()
}
/// Get the view pointer underlying this context.
pub fn view(&self) -> &View<V> {
self.view
}
/// Get the model underlying this view.
pub fn model(&self) -> &Model<V> {
&self.view.model
}
/// Access the underlying window context.
pub fn window_context(&mut self) -> &mut WindowContext<'a> {
&mut self.window_cx
}
/// Sets a given callback to be run on the next frame.
pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
where
V: 'static,
{
let view = self.view().clone();
self.window_cx.on_next_frame(move |cx| view.update(cx, f));
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
let view = self.view().downgrade();
self.window_cx.defer(move |cx| {
view.update(cx, f).ok();
});
}
/// Observe another model or view for changes to its state, as tracked by [`ModelContext::notify`].
pub fn observe<V2, E>(
&mut self,
entity: &E,
mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: 'static,
V: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_observer(
entity_id,
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
view.update(cx, |this, cx| on_notify(this, handle, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
)
}
/// Subscribe to events emitted by another model or view.
/// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
/// The callback will be invoked with a reference to the current view, a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a view context for the current view.
pub fn subscribe<V2, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: EventEmitter<Evt>,
E: Entity<V2>,
Evt: 'static,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let handle = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_subscription(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&handle) {
let event = event.downcast_ref().expect("invalid event type");
view.update(cx, |this, cx| on_event(this, handle, event, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
),
)
}
/// Register a callback to be invoked when the view is released.
///
/// The callback receives a handle to the view's window. This handle may be
/// invalid, if the window was closed before the view was released.
pub fn on_release(
&mut self,
on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
self.view.model.entity_id,
Box::new(move |this, cx| {
let this = this.downcast_mut().expect("invalid entity type");
on_release(this, window_handle, cx)
}),
);
activate();
subscription
}
/// Register a callback to be invoked when the given Model or View is released.
pub fn observe_release<V2, E>(
&mut self,
entity: &E,
mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V: 'static,
V2: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
entity_id,
Box::new(move |entity, cx| {
let entity = entity.downcast_mut().expect("invalid entity type");
let _ = window_handle.update(cx, |_, cx| {
view.update(cx, |this, cx| on_release(this, entity, cx))
});
}),
);
activate();
subscription
}
/// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
/// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
pub fn notify(&mut self) {
self.window_cx.notify(self.view.entity_id());
}
/// Register a callback to be invoked when the window is resized.
pub fn observe_window_bounds(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.bounds_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a callback to be invoked when the window is activated or deactivated.
pub fn observe_window_activation(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.activation_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Registers a callback to be invoked when the window appearance changes.
pub fn observe_window_appearance(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.appearance_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle receives focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() != Some(&focus_id)
&& event.current_focus_path.last() == Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(|_| activate());
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants receives focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_in(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if !event.previous_focus_path.contains(&focus_id)
&& event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when the given focus handle loses focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_blur(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() == Some(&focus_id)
&& event.current_focus_path.last() != Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when nothing in the window has focus.
/// This typically happens when the node that was focused is removed from the tree,
/// and this callback lets you chose a default place to restore the users focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_lost(
&mut self,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.focus_lost_listeners.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants loses focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_out(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.contains(&focus_id)
&& !event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Schedule a future to be run asynchronously.
/// The given callback is invoked with a [`WeakView<V>`] to avoid leaking the view for a long-running process.
/// It's also given an [`AsyncWindowContext`], which can be used to access the state of the view across await points.
/// The returned future will be polled on the main thread.
pub fn spawn<Fut, R>(
&mut self,
f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
let view = self.view().downgrade();
self.window_cx.spawn(|cx| f(view, cx))
}
/// Register a callback to be invoked when the given global state changes.
pub fn observe_global<G: Global>(
&mut self,
mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let view = self.view().downgrade();
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
.unwrap_or(false)
}),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a callback to be invoked when the given Action type is dispatched to the window.
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().clone();
self.window_cx
.on_action(action_type, move |action, phase, cx| {
handle.update(cx, |view, cx| {
listener(view, action, phase, cx);
})
});
}
/// Emit an event to be handled any other views that have subscribed via [ViewContext::subscribe].
pub fn emit<Evt>(&mut self, event: Evt)
where
Evt: 'static,
V: EventEmitter<Evt>,
{
let emitter = self.view.model.entity_id;
self.app.push_effect(Effect::Emit {
emitter,
event_type: TypeId::of::<Evt>(),
event: Box::new(event),
});
}
/// Move focus to the current view, assuming it implements [`FocusableView`].
pub fn focus_self(&mut self)
where
V: FocusableView,
{
self.defer(|view, cx| view.focus_handle(cx).focus(cx))
}
/// Convenience method for accessing view state in an event callback.
///
/// Many GPUI callbacks take the form of `Fn(&E, &mut WindowContext)`,
/// but it's often useful to be able to access view state in these
/// callbacks. This method provides a convenient way to do so.
pub fn listener<E>(
&self,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = self.view().downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
}
impl<V> Context for ViewContext<'_, V> {
type Result<U> = U;
fn new_model<T: 'static>(
&mut self,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Model<T> {
self.window_cx.new_model(build_model)
}
fn reserve_model<T: 'static>(&mut self) -> Self::Result<crate::Reservation<T>> {
self.window_cx.reserve_model()
}
fn insert_model<T: 'static>(
&mut self,
reservation: crate::Reservation<T>,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Self::Result<Model<T>> {
self.window_cx.insert_model(reservation, build_model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
self.window_cx.update_model(model, update)
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.window_cx.read_model(handle, read)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
self.window_cx.update_window(window, update)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
self.window_cx.read_window(window, read)
}
}
impl<V: 'static> VisualContext for ViewContext<'_, V> {
fn new_view<W: Render + 'static>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>> {
self.window_cx.new_view(build_view_state)
}
fn update_view<V2: 'static, R>(
&mut self,
view: &View<V2>,
update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
) -> Self::Result<R> {
self.window_cx.update_view(view, update)
}
fn replace_root_view<W>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>>
where
W: 'static + Render,
{
self.window_cx.replace_root_view(build_view)
}
fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.focus_view(view)
}
fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.dismiss_view(view)
}
}
impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
type Target = WindowContext<'a>;
fn deref(&self) -> &Self::Target {
&self.window_cx
}
}
impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.window_cx
}
}
// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
slotmap::new_key_type! {
/// A unique identifier for a window.
pub struct WindowId;
}
impl WindowId {
/// Converts this window ID to a `u64`.
pub fn as_u64(&self) -> u64 {
self.0.as_ffi()
}
}
/// A handle to a window with a specific root view type.
/// Note that this does not keep the window alive on its own.
#[derive(Deref, DerefMut)]
pub struct WindowHandle<V> {
#[deref]
#[deref_mut]
pub(crate) any_handle: AnyWindowHandle,
state_type: PhantomData<V>,
}
impl<V: 'static + Render> WindowHandle<V> {
/// Creates a new handle from a window ID.
/// This does not check if the root type of the window is `V`.
pub fn new(id: WindowId) -> Self {
WindowHandle {
any_handle: AnyWindowHandle {
id,
state_type: TypeId::of::<V>(),
},
state_type: PhantomData,
}
}
/// Get the root view out of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
where
C: Context,
{
Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))
}))
}
/// Updates the root view of this window.
///
/// This will fail if the window has been closed or if the root view's type does not match
pub fn update<C, R>(
&self,
cx: &mut C,
update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self.any_handle, |root_view, cx| {
let view = root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(cx.update_view(&view, update))
})?
}
/// Read the root view out of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
let x = cx
.windows
.get(self.id)
.and_then(|window| {
window
.as_ref()
.and_then(|window| window.root_view.clone())
.map(|root_view| root_view.downcast::<V>())
})
.ok_or_else(|| anyhow!("window not found"))?
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(x.read(cx))
}
/// Read the root view out of this window, with a callback
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
where
C: Context,
{
cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
}
/// Read the root view pointer off of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
where
C: Context,
{
cx.read_window(self, |root_view, _cx| root_view.clone())
}
/// Check if this window is 'active'.
///
/// Will return `None` if the window is closed or currently
/// borrowed.
pub fn is_active(&self, cx: &mut AppContext) -> Option<bool> {
cx.update_window(self.any_handle, |_, cx| cx.is_window_active())
.ok()
}
}
impl<V> Copy for WindowHandle<V> {}
impl<V> Clone for WindowHandle<V> {
fn clone(&self) -> Self {
*self
}
}
impl<V> PartialEq for WindowHandle<V> {
fn eq(&self, other: &Self) -> bool {
self.any_handle == other.any_handle
}
}
impl<V> Eq for WindowHandle<V> {}
impl<V> Hash for WindowHandle<V> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.any_handle.hash(state);
}
}
impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
fn from(val: WindowHandle<V>) -> Self {
val.any_handle
}
}
/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct AnyWindowHandle {
pub(crate) id: WindowId,
state_type: TypeId,
}
impl AnyWindowHandle {
/// Get the ID of this window.
pub fn window_id(&self) -> WindowId {
self.id
}
/// Attempt to convert this handle to a window handle with a specific root view type.
/// If the types do not match, this will return `None`.
pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
if TypeId::of::<T>() == self.state_type {
Some(WindowHandle {
any_handle: *self,
state_type: PhantomData,
})
} else {
None
}
}
/// Updates the state of the root view of this window.
///
/// This will fail if the window has been closed.
pub fn update<C, R>(
self,
cx: &mut C,
update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self, update)
}
/// Read the state of the root view of this window.
///
/// This will fail if the window has been closed.
pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
where
C: Context,
T: 'static,
{
let view = self
.downcast::<T>()
.context("the type of the window's root view has changed")?;
cx.read_window(&view, read)
}
}
/// An identifier for an [`Element`](crate::Element).
///
/// Can be constructed with a string, a number, or both, as well
/// as other internal representations.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ElementId {
/// The ID of a View element
View(EntityId),
/// An integer ID.
Integer(usize),
/// A string based ID.
Name(SharedString),
/// An ID that's equated with a focus handle.
FocusHandle(FocusId),
/// A combination of a name and an integer.
NamedInteger(SharedString, usize),
}
impl Display for ElementId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
ElementId::Integer(ix) => write!(f, "{}", ix)?,
ElementId::Name(name) => write!(f, "{}", name)?,
ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
}
Ok(())
}
}
impl TryInto<SharedString> for ElementId {
type Error = anyhow::Error;
fn try_into(self) -> anyhow::Result<SharedString> {
if let ElementId::Name(name) = self {
Ok(name)
} else {
Err(anyhow!("element id is not string"))
}
}
}
impl From<usize> for ElementId {
fn from(id: usize) -> Self {
ElementId::Integer(id)
}
}
impl From<i32> for ElementId {
fn from(id: i32) -> Self {
Self::Integer(id as usize)
}
}
impl From<SharedString> for ElementId {
fn from(name: SharedString) -> Self {
ElementId::Name(name)
}
}
impl From<&'static str> for ElementId {
fn from(name: &'static str) -> Self {
ElementId::Name(name.into())
}
}
impl<'a> From<&'a FocusHandle> for ElementId {
fn from(handle: &'a FocusHandle) -> Self {
ElementId::FocusHandle(handle.id)
}
}
impl From<(&'static str, EntityId)> for ElementId {
fn from((name, id): (&'static str, EntityId)) -> Self {
ElementId::NamedInteger(name.into(), id.as_u64() as usize)
}
}
impl From<(&'static str, usize)> for ElementId {
fn from((name, id): (&'static str, usize)) -> Self {
ElementId::NamedInteger(name.into(), id)
}
}
impl From<(&'static str, u64)> for ElementId {
fn from((name, id): (&'static str, u64)) -> Self {
ElementId::NamedInteger(name.into(), id as usize)
}
}
/// A rectangle to be rendered in the window at the given position and size.
/// Passed as an argument [`WindowContext::paint_quad`].
#[derive(Clone)]
pub struct PaintQuad {
/// The bounds of the quad within the window.
pub bounds: Bounds<Pixels>,
/// The radii of the quad's corners.
pub corner_radii: Corners<Pixels>,
/// The background color of the quad.
pub background: Hsla,
/// The widths of the quad's borders.
pub border_widths: Edges<Pixels>,
/// The color of the quad's borders.
pub border_color: Hsla,
}
impl PaintQuad {
/// Sets the corner radii of the quad.
pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
PaintQuad {
corner_radii: corner_radii.into(),
..self
}
}
/// Sets the border widths of the quad.
pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
PaintQuad {
border_widths: border_widths.into(),
..self
}
}
/// Sets the border color of the quad.
pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
PaintQuad {
border_color: border_color.into(),
..self
}
}
/// Sets the background color of the quad.
pub fn background(self, background: impl Into<Hsla>) -> Self {
PaintQuad {
background: background.into(),
..self
}
}
}
/// Creates a quad with the given parameters.
pub fn quad(
bounds: Bounds<Pixels>,
corner_radii: impl Into<Corners<Pixels>>,
background: impl Into<Hsla>,
border_widths: impl Into<Edges<Pixels>>,
border_color: impl Into<Hsla>,
) -> PaintQuad {
PaintQuad {
bounds,
corner_radii: corner_radii.into(),
background: background.into(),
border_widths: border_widths.into(),
border_color: border_color.into(),
}
}
/// Creates a filled quad with the given bounds and background color.
pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: background.into(),
border_widths: (0.).into(),
border_color: transparent_black(),
}
}
/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: transparent_black(),
border_widths: (1.).into(),
border_color: border_color.into(),
}
}