Add xAI language model provider (#33593)

Closes #30010

Release Notes:

- Add support for xAI language model provider
This commit is contained in:
Umesh Yadav 2025-07-16 01:05:50 +05:30 committed by GitHub
parent af0031ae8b
commit ec52e9281a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 840 additions and 28 deletions

12
Cargo.lock generated
View file

@ -9094,6 +9094,7 @@ dependencies = [
"util",
"vercel",
"workspace-hack",
"x_ai",
"zed_llm_client",
]
@ -19840,6 +19841,17 @@ version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec107c4503ea0b4a98ef47356329af139c0a4f7750e621cf2973cd3385ebcb3d"
[[package]]
name = "x_ai"
version = "0.1.0"
dependencies = [
"anyhow",
"schemars",
"serde",
"strum 0.27.1",
"workspace-hack",
]
[[package]]
name = "xattr"
version = "0.2.3"

View file

@ -179,6 +179,7 @@ members = [
"crates/welcome",
"crates/workspace",
"crates/worktree",
"crates/x_ai",
"crates/zed",
"crates/zed_actions",
"crates/zeta",
@ -394,6 +395,7 @@ web_search_providers = { path = "crates/web_search_providers" }
welcome = { path = "crates/welcome" }
workspace = { path = "crates/workspace" }
worktree = { path = "crates/worktree" }
x_ai = { path = "crates/x_ai" }
zed = { path = "crates/zed" }
zed_actions = { path = "crates/zed_actions" }
zeta = { path = "crates/zeta" }

3
assets/icons/ai_x_ai.svg Normal file
View file

@ -0,0 +1,3 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="m12.414 5.47.27 9.641h2.157l.27-13.15zM15.11.889h-3.293L6.651 7.613l1.647 2.142zM.889 15.11H4.18l1.647-2.142-1.647-2.143zm0-9.641 7.409 9.641h3.292L4.181 5.47z" fill="#000"/>
</svg>

After

Width:  |  Height:  |  Size: 289 B

View file

@ -21,6 +21,7 @@ pub enum IconName {
AiOpenAi,
AiOpenRouter,
AiVZero,
AiXAi,
AiZed,
ArrowCircle,
ArrowDown,

View file

@ -43,6 +43,7 @@ ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
open_router = { workspace = true, features = ["schemars"] }
vercel = { workspace = true, features = ["schemars"] }
x_ai = { workspace = true, features = ["schemars"] }
partial-json-fixer.workspace = true
proto.workspace = true
release_channel.workspace = true

View file

@ -20,6 +20,7 @@ use crate::provider::ollama::OllamaLanguageModelProvider;
use crate::provider::open_ai::OpenAiLanguageModelProvider;
use crate::provider::open_router::OpenRouterLanguageModelProvider;
use crate::provider::vercel::VercelLanguageModelProvider;
use crate::provider::x_ai::XAiLanguageModelProvider;
pub use crate::settings::*;
pub fn init(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) {
@ -81,5 +82,6 @@ fn register_language_model_providers(
VercelLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(XAiLanguageModelProvider::new(client.http_client(), cx), cx);
registry.register_provider(CopilotChatLanguageModelProvider::new(cx), cx);
}

View file

@ -10,3 +10,4 @@ pub mod ollama;
pub mod open_ai;
pub mod open_router;
pub mod vercel;
pub mod x_ai;

View file

@ -376,7 +376,7 @@ impl LanguageModel for OpenRouterLanguageModel {
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
let model_id = self.model.id().trim().to_lowercase();
if model_id.contains("gemini") {
if model_id.contains("gemini") || model_id.contains("grok-4") {
LanguageModelToolSchemaFormat::JsonSchemaSubset
} else {
LanguageModelToolSchemaFormat::JsonSchema

View file

@ -0,0 +1,571 @@
use anyhow::{Context as _, Result, anyhow};
use collections::BTreeMap;
use credentials_provider::CredentialsProvider;
use futures::{FutureExt, StreamExt, future::BoxFuture};
use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
LanguageModelToolChoice, LanguageModelToolSchemaFormat, RateLimiter, Role,
};
use menu;
use open_ai::ResponseStreamEvent;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::sync::Arc;
use strum::IntoEnumIterator;
use x_ai::Model;
use ui::{ElevationIndex, List, Tooltip, prelude::*};
use ui_input::SingleLineInput;
use util::ResultExt;
use crate::{AllLanguageModelSettings, ui::InstructionListItem};
const PROVIDER_ID: &str = "x_ai";
const PROVIDER_NAME: &str = "xAI";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct XAiSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
pub name: String,
pub display_name: Option<String>,
pub max_tokens: u64,
pub max_output_tokens: Option<u64>,
pub max_completion_tokens: Option<u64>,
}
pub struct XAiLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
api_key: Option<String>,
api_key_from_env: bool,
_subscription: Subscription,
}
const XAI_API_KEY_VAR: &str = "XAI_API_KEY";
impl State {
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
credentials_provider
.delete_credentials(&api_url, &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = None;
this.api_key_from_env = false;
cx.notify();
})
})
}
fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
credentials_provider
.write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
if self.is_authenticated() {
return Task::ready(Ok(()));
}
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
let (api_key, from_env) = if let Ok(api_key) = std::env::var(XAI_API_KEY_VAR) {
(api_key, true)
} else {
let (_, api_key) = credentials_provider
.read_credentials(&api_url, &cx)
.await?
.ok_or(AuthenticateError::CredentialsNotFound)?;
(
String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
false,
)
};
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
this.api_key_from_env = from_env;
cx.notify();
})?;
Ok(())
})
}
}
impl XAiLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let state = cx.new(|cx| State {
api_key: None,
api_key_from_env: false,
_subscription: cx.observe_global::<SettingsStore>(|_this: &mut State, cx| {
cx.notify();
}),
});
Self { http_client, state }
}
fn create_language_model(&self, model: x_ai::Model) -> Arc<dyn LanguageModel> {
Arc::new(XAiLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
})
}
}
impl LanguageModelProviderState for XAiLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for XAiLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiXAi
}
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(x_ai::Model::default()))
}
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(x_ai::Model::default_fast()))
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
for model in x_ai::Model::iter() {
if !matches!(model, x_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
for model in &AllLanguageModelSettings::get_global(cx)
.x_ai
.available_models
{
models.insert(
model.name.clone(),
x_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
max_output_tokens: model.max_output_tokens,
max_completion_tokens: model.max_completion_tokens,
},
);
}
models
.into_values()
.map(|model| self.create_language_model(model))
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
.into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.reset_api_key(cx))
}
}
pub struct XAiLanguageModel {
id: LanguageModelId,
model: x_ai::Model,
state: gpui::Entity<State>,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl XAiLanguageModel {
fn stream_completion(
&self,
request: open_ai::Request,
cx: &AsyncApp,
) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
{
let http_client = self.http_client.clone();
let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
(state.api_key.clone(), api_url)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
let future = self.request_limiter.stream(async move {
let api_key = api_key.context("Missing xAI API Key")?;
let request =
open_ai::stream_completion(http_client.as_ref(), &api_url, &api_key, request);
let response = request.await?;
Ok(response)
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
impl LanguageModel for XAiLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn supports_tools(&self) -> bool {
self.model.supports_tool()
}
fn supports_images(&self) -> bool {
self.model.supports_images()
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto
| LanguageModelToolChoice::Any
| LanguageModelToolChoice::None => true,
}
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
let model_id = self.model.id().trim().to_lowercase();
if model_id.eq(x_ai::Model::Grok4.id()) {
LanguageModelToolSchemaFormat::JsonSchemaSubset
} else {
LanguageModelToolSchemaFormat::JsonSchema
}
}
fn telemetry_id(&self) -> String {
format!("x_ai/{}", self.model.id())
}
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn max_output_tokens(&self) -> Option<u64> {
self.model.max_output_tokens()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
count_xai_tokens(request, self.model.clone(), cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
futures::stream::BoxStream<
'static,
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
>,
LanguageModelCompletionError,
>,
> {
let request = crate::provider::open_ai::into_open_ai(
request,
self.model.id(),
self.model.supports_parallel_tool_calls(),
self.max_output_tokens(),
);
let completions = self.stream_completion(request, cx);
async move {
let mapper = crate::provider::open_ai::OpenAiEventMapper::new();
Ok(mapper.map_stream(completions.await?).boxed())
}
.boxed()
}
}
pub fn count_xai_tokens(
request: LanguageModelRequest,
model: Model,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
cx.background_spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.string_contents()),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
let model_name = if model.max_token_count() >= 100_000 {
"gpt-4o"
} else {
"gpt-4"
};
tiktoken_rs::num_tokens_from_messages(model_name, &messages).map(|tokens| tokens as u64)
})
.boxed()
}
struct ConfigurationView {
api_key_editor: Entity<SingleLineInput>,
state: gpui::Entity<State>,
load_credentials_task: Option<Task<()>>,
}
impl ConfigurationView {
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
let api_key_editor = cx.new(|cx| {
SingleLineInput::new(
window,
cx,
"xai-0000000000000000000000000000000000000000000000000",
)
.label("API key")
});
cx.observe(&state, |_, _, cx| {
cx.notify();
})
.detach();
let load_credentials_task = Some(cx.spawn_in(window, {
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
// We don't log an error, because "not signed in" is also an error.
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
api_key_editor,
state,
load_credentials_task,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
let api_key = self
.api_key_editor
.read(cx)
.editor()
.read(cx)
.text(cx)
.trim()
.to_string();
// Don't proceed if no API key is provided and we're not authenticated
if api_key.is_empty() && !self.state.read(cx).is_authenticated() {
return;
}
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state
.update(cx, |state, cx| state.set_api_key(api_key, cx))?
.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
self.api_key_editor.update(cx, |input, cx| {
input.editor.update(cx, |editor, cx| {
editor.set_text("", window, cx);
});
});
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
!self.state.read(cx).is_authenticated()
}
}
impl Render for ConfigurationView {
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let env_var_set = self.state.read(cx).api_key_from_env;
let api_key_section = if self.should_render_editor(cx) {
v_flex()
.on_action(cx.listener(Self::save_api_key))
.child(Label::new("To use Zed's agent with xAI, you need to add an API key. Follow these steps:"))
.child(
List::new()
.child(InstructionListItem::new(
"Create one by visiting",
Some("xAI console"),
Some("https://console.x.ai/team/default/api-keys"),
))
.child(InstructionListItem::text_only(
"Paste your API key below and hit enter to start using the agent",
)),
)
.child(self.api_key_editor.clone())
.child(
Label::new(format!(
"You can also assign the {XAI_API_KEY_VAR} environment variable and restart Zed."
))
.size(LabelSize::Small)
.color(Color::Muted),
)
.child(
Label::new("Note that xAI is a custom OpenAI-compatible provider.")
.size(LabelSize::Small)
.color(Color::Muted),
)
.into_any()
} else {
h_flex()
.mt_1()
.p_1()
.justify_between()
.rounded_md()
.border_1()
.border_color(cx.theme().colors().border)
.bg(cx.theme().colors().background)
.child(
h_flex()
.gap_1()
.child(Icon::new(IconName::Check).color(Color::Success))
.child(Label::new(if env_var_set {
format!("API key set in {XAI_API_KEY_VAR} environment variable.")
} else {
"API key configured.".to_string()
})),
)
.child(
Button::new("reset-api-key", "Reset API Key")
.label_size(LabelSize::Small)
.icon(IconName::Undo)
.icon_size(IconSize::Small)
.icon_position(IconPosition::Start)
.layer(ElevationIndex::ModalSurface)
.when(env_var_set, |this| {
this.tooltip(Tooltip::text(format!("To reset your API key, unset the {XAI_API_KEY_VAR} environment variable.")))
})
.on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
)
.into_any()
};
if self.load_credentials_task.is_some() {
div().child(Label::new("Loading credentials…")).into_any()
} else {
v_flex().size_full().child(api_key_section).into_any()
}
}
}

View file

@ -17,6 +17,7 @@ use crate::provider::{
open_ai::OpenAiSettings,
open_router::OpenRouterSettings,
vercel::VercelSettings,
x_ai::XAiSettings,
};
/// Initializes the language model settings.
@ -28,33 +29,33 @@ pub fn init(cx: &mut App) {
pub struct AllLanguageModelSettings {
pub anthropic: AnthropicSettings,
pub bedrock: AmazonBedrockSettings,
pub ollama: OllamaSettings,
pub openai: OpenAiSettings,
pub open_router: OpenRouterSettings,
pub zed_dot_dev: ZedDotDevSettings,
pub google: GoogleSettings,
pub vercel: VercelSettings,
pub lmstudio: LmStudioSettings,
pub deepseek: DeepSeekSettings,
pub google: GoogleSettings,
pub lmstudio: LmStudioSettings,
pub mistral: MistralSettings,
pub ollama: OllamaSettings,
pub open_router: OpenRouterSettings,
pub openai: OpenAiSettings,
pub vercel: VercelSettings,
pub x_ai: XAiSettings,
pub zed_dot_dev: ZedDotDevSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option<AnthropicSettingsContent>,
pub bedrock: Option<AmazonBedrockSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub deepseek: Option<DeepseekSettingsContent>,
pub google: Option<GoogleSettingsContent>,
pub lmstudio: Option<LmStudioSettingsContent>,
pub openai: Option<OpenAiSettingsContent>,
pub mistral: Option<MistralSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub open_router: Option<OpenRouterSettingsContent>,
pub openai: Option<OpenAiSettingsContent>,
pub vercel: Option<VercelSettingsContent>,
pub x_ai: Option<XAiSettingsContent>,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
pub google: Option<GoogleSettingsContent>,
pub deepseek: Option<DeepseekSettingsContent>,
pub vercel: Option<VercelSettingsContent>,
pub mistral: Option<MistralSettingsContent>,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
@ -114,6 +115,12 @@ pub struct GoogleSettingsContent {
pub available_models: Option<Vec<provider::google::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct XAiSettingsContent {
pub api_url: Option<String>,
pub available_models: Option<Vec<provider::x_ai::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct ZedDotDevSettingsContent {
available_models: Option<Vec<cloud::AvailableModel>>,
@ -230,6 +237,18 @@ impl settings::Settings for AllLanguageModelSettings {
vercel.as_ref().and_then(|s| s.available_models.clone()),
);
// XAI
let x_ai = value.x_ai.clone();
merge(
&mut settings.x_ai.api_url,
x_ai.as_ref().and_then(|s| s.api_url.clone()),
);
merge(
&mut settings.x_ai.available_models,
x_ai.as_ref().and_then(|s| s.available_models.clone()),
);
// ZedDotDev
merge(
&mut settings.zed_dot_dev.available_models,
value

23
crates/x_ai/Cargo.toml Normal file
View file

@ -0,0 +1,23 @@
[package]
name = "x_ai"
version = "0.1.0"
edition.workspace = true
publish.workspace = true
license = "GPL-3.0-or-later"
[lints]
workspace = true
[lib]
path = "src/x_ai.rs"
[features]
default = []
schemars = ["dep:schemars"]
[dependencies]
anyhow.workspace = true
schemars = { workspace = true, optional = true }
serde.workspace = true
strum.workspace = true
workspace-hack.workspace = true

1
crates/x_ai/LICENSE-GPL Symbolic link
View file

@ -0,0 +1 @@
../../LICENSE-GPL

126
crates/x_ai/src/x_ai.rs Normal file
View file

@ -0,0 +1,126 @@
use anyhow::Result;
use serde::{Deserialize, Serialize};
use strum::EnumIter;
pub const XAI_API_URL: &str = "https://api.x.ai/v1";
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq, EnumIter)]
pub enum Model {
#[serde(rename = "grok-2-vision-latest")]
Grok2Vision,
#[default]
#[serde(rename = "grok-3-latest")]
Grok3,
#[serde(rename = "grok-3-mini-latest")]
Grok3Mini,
#[serde(rename = "grok-3-fast-latest")]
Grok3Fast,
#[serde(rename = "grok-3-mini-fast-latest")]
Grok3MiniFast,
#[serde(rename = "grok-4-latest")]
Grok4,
#[serde(rename = "custom")]
Custom {
name: String,
/// The name displayed in the UI, such as in the assistant panel model dropdown menu.
display_name: Option<String>,
max_tokens: u64,
max_output_tokens: Option<u64>,
max_completion_tokens: Option<u64>,
},
}
impl Model {
pub fn default_fast() -> Self {
Self::Grok3Fast
}
pub fn from_id(id: &str) -> Result<Self> {
match id {
"grok-2-vision" => Ok(Self::Grok2Vision),
"grok-3" => Ok(Self::Grok3),
"grok-3-mini" => Ok(Self::Grok3Mini),
"grok-3-fast" => Ok(Self::Grok3Fast),
"grok-3-mini-fast" => Ok(Self::Grok3MiniFast),
_ => anyhow::bail!("invalid model id '{id}'"),
}
}
pub fn id(&self) -> &str {
match self {
Self::Grok2Vision => "grok-2-vision",
Self::Grok3 => "grok-3",
Self::Grok3Mini => "grok-3-mini",
Self::Grok3Fast => "grok-3-fast",
Self::Grok3MiniFast => "grok-3-mini-fast",
Self::Grok4 => "grok-4",
Self::Custom { name, .. } => name,
}
}
pub fn display_name(&self) -> &str {
match self {
Self::Grok2Vision => "Grok 2 Vision",
Self::Grok3 => "Grok 3",
Self::Grok3Mini => "Grok 3 Mini",
Self::Grok3Fast => "Grok 3 Fast",
Self::Grok3MiniFast => "Grok 3 Mini Fast",
Self::Grok4 => "Grok 4",
Self::Custom {
name, display_name, ..
} => display_name.as_ref().unwrap_or(name),
}
}
pub fn max_token_count(&self) -> u64 {
match self {
Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => 131_072,
Self::Grok4 => 256_000,
Self::Grok2Vision => 8_192,
Self::Custom { max_tokens, .. } => *max_tokens,
}
}
pub fn max_output_tokens(&self) -> Option<u64> {
match self {
Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => Some(8_192),
Self::Grok4 => Some(64_000),
Self::Grok2Vision => Some(4_096),
Self::Custom {
max_output_tokens, ..
} => *max_output_tokens,
}
}
pub fn supports_parallel_tool_calls(&self) -> bool {
match self {
Self::Grok2Vision
| Self::Grok3
| Self::Grok3Mini
| Self::Grok3Fast
| Self::Grok3MiniFast
| Self::Grok4 => true,
Model::Custom { .. } => false,
}
}
pub fn supports_tool(&self) -> bool {
match self {
Self::Grok2Vision
| Self::Grok3
| Self::Grok3Mini
| Self::Grok3Fast
| Self::Grok3MiniFast
| Self::Grok4 => true,
Model::Custom { .. } => false,
}
}
pub fn supports_images(&self) -> bool {
match self {
Self::Grok2Vision => true,
_ => false,
}
}
}

View file

@ -23,6 +23,8 @@ Here's an overview of the supported providers and tool call support:
| [OpenAI](#openai) | ✅ |
| [OpenAI API Compatible](#openai-api-compatible) | 🚫 |
| [OpenRouter](#openrouter) | ✅ |
| [Vercel](#vercel-v0) | ✅ |
| [xAI](#xai) | ✅ |
## Use Your Own Keys {#use-your-own-keys}
@ -444,26 +446,29 @@ Custom models will be listed in the model dropdown in the Agent Panel.
Zed supports using OpenAI compatible APIs by specifying a custom `endpoint` and `available_models` for the OpenAI provider.
You can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`.
Here are a few model examples you can plug in by using this feature:
Zed supports using OpenAI compatible APIs by specifying a custom `api_url` and `available_models` for the OpenAI provider. This is useful for connecting to other hosted services (like Together AI, Anyscale, etc.) or local models.
#### X.ai Grok
To configure a compatible API, you can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`. For example, to connect to [Together AI](https://www.together.ai/):
Example configuration for using X.ai Grok with Zed:
1. Get an API key from your [Together AI account](https://api.together.ai/settings/api-keys).
2. Add the following to your `settings.json`:
```json
{
"language_models": {
"openai": {
"api_url": "https://api.x.ai/v1",
"api_url": "https://api.together.xyz/v1",
"api_key": "YOUR_TOGETHER_AI_API_KEY",
"available_models": [
{
"name": "grok-beta",
"display_name": "X.ai Grok (Beta)",
"max_tokens": 131072
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"display_name": "Together Mixtral 8x7B",
"max_tokens": 32768,
"supports_tools": true
}
]
}
}
],
"version": "1"
},
}
```
@ -525,7 +530,9 @@ You can find available models and their specifications on the [OpenRouter models
Custom models will be listed in the model dropdown in the Agent Panel.
### Vercel v0
### Vercel v0 {#vercel-v0}
> ✅ Supports tool use
[Vercel v0](https://vercel.com/docs/v0/api) is an expert model for generating full-stack apps, with framework-aware completions optimized for modern stacks like Next.js and Vercel.
It supports text and image inputs and provides fast streaming responses.
@ -537,6 +544,49 @@ Once you have it, paste it directly into the Vercel provider section in the pane
You should then find it as `v0-1.5-md` in the model dropdown in the Agent Panel.
### xAI {#xai}
> ✅ Supports tool use
Zed has first-class support for [xAI](https://x.ai/) models. You can use your own API key to access Grok models.
1. [Create an API key in the xAI Console](https://console.x.ai/team/default/api-keys)
2. Open the settings view (`agent: open configuration`) and go to the **xAI** section
3. Enter your xAI API key
The xAI API key will be saved in your keychain. Zed will also use the `XAI_API_KEY` environment variable if it's defined.
> **Note:** While the xAI API is OpenAI-compatible, Zed has first-class support for it as a dedicated provider. For the best experience, we recommend using the dedicated `x_ai` provider configuration instead of the [OpenAI API Compatible](#openai-api-compatible) method.
#### Custom Models {#xai-custom-models}
The Zed agent comes pre-configured with common Grok models. If you wish to use alternate models or customize their parameters, you can do so by adding the following to your Zed `settings.json`:
```json
{
"language_models": {
"x_ai": {
"api_url": "https://api.x.ai/v1",
"available_models": [
{
"name": "grok-1.5",
"display_name": "Grok 1.5",
"max_tokens": 131072,
"max_output_tokens": 8192
},
{
"name": "grok-1.5v",
"display_name": "Grok 1.5V (Vision)",
"max_tokens": 131072,
"max_output_tokens": 8192,
"supports_images": true
}
]
}
}
}
```
## Advanced Configuration {#advanced-configuration}
### Custom Provider Endpoints {#custom-provider-endpoint}