ZIm/crates/gpui/src/app/test_context.rs
João Marcos 4e8ecfc0c4
Increase cx.condition timeout to fix flaky test (#28822)
We've been seeing `test_no_duplicated_completion_requests` fail randomly
with the error "condition timed out".

But it's always failing on MacOS, and MacOS sets a shorter timeout of
100ms, compared to 1s from other platforms, this PR increases MacOS's
timeout to match other platforms'.

Release Notes:

- N/A
2025-04-16 00:36:35 +00:00

1007 lines
32 KiB
Rust

use crate::{
Action, AnyView, AnyWindowHandle, App, AppCell, AppContext, AsyncApp, AvailableSpace,
BackgroundExecutor, BorrowAppContext, Bounds, ClipboardItem, DrawPhase, Drawable, Element,
Empty, EventEmitter, ForegroundExecutor, Global, InputEvent, Keystroke, Modifiers,
ModifiersChangedEvent, MouseButton, MouseDownEvent, MouseMoveEvent, MouseUpEvent, Pixels,
Platform, Point, Render, Result, Size, Task, TestDispatcher, TestPlatform,
TestScreenCaptureSource, TestWindow, TextSystem, VisualContext, Window, WindowBounds,
WindowHandle, WindowOptions,
};
use anyhow::{anyhow, bail};
use futures::{Stream, StreamExt, channel::oneshot};
use std::{cell::RefCell, future::Future, ops::Deref, rc::Rc, sync::Arc, time::Duration};
/// A TestAppContext is provided to tests created with `#[gpui::test]`, it provides
/// an implementation of `Context` with additional methods that are useful in tests.
#[derive(Clone)]
pub struct TestAppContext {
#[doc(hidden)]
pub app: Rc<AppCell>,
#[doc(hidden)]
pub background_executor: BackgroundExecutor,
#[doc(hidden)]
pub foreground_executor: ForegroundExecutor,
#[doc(hidden)]
pub dispatcher: TestDispatcher,
test_platform: Rc<TestPlatform>,
text_system: Arc<TextSystem>,
fn_name: Option<&'static str>,
on_quit: Rc<RefCell<Vec<Box<dyn FnOnce() + 'static>>>>,
}
impl AppContext for TestAppContext {
type Result<T> = T;
fn new<T: 'static>(
&mut self,
build_entity: impl FnOnce(&mut Context<T>) -> T,
) -> Self::Result<Entity<T>> {
let mut app = self.app.borrow_mut();
app.new(build_entity)
}
fn reserve_entity<T: 'static>(&mut self) -> Self::Result<crate::Reservation<T>> {
let mut app = self.app.borrow_mut();
app.reserve_entity()
}
fn insert_entity<T: 'static>(
&mut self,
reservation: crate::Reservation<T>,
build_entity: impl FnOnce(&mut Context<T>) -> T,
) -> Self::Result<Entity<T>> {
let mut app = self.app.borrow_mut();
app.insert_entity(reservation, build_entity)
}
fn update_entity<T: 'static, R>(
&mut self,
handle: &Entity<T>,
update: impl FnOnce(&mut T, &mut Context<T>) -> R,
) -> Self::Result<R> {
let mut app = self.app.borrow_mut();
app.update_entity(handle, update)
}
fn read_entity<T, R>(
&self,
handle: &Entity<T>,
read: impl FnOnce(&T, &App) -> R,
) -> Self::Result<R>
where
T: 'static,
{
let app = self.app.borrow();
app.read_entity(handle, read)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, f: F) -> Result<T>
where
F: FnOnce(AnyView, &mut Window, &mut App) -> T,
{
let mut lock = self.app.borrow_mut();
lock.update_window(window, f)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(Entity<T>, &App) -> R,
) -> Result<R>
where
T: 'static,
{
let app = self.app.borrow();
app.read_window(window, read)
}
fn background_spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
where
R: Send + 'static,
{
self.background_executor.spawn(future)
}
fn read_global<G, R>(&self, callback: impl FnOnce(&G, &App) -> R) -> Self::Result<R>
where
G: Global,
{
let app = self.app.borrow();
app.read_global(callback)
}
}
impl TestAppContext {
/// Creates a new `TestAppContext`. Usually you can rely on `#[gpui::test]` to do this for you.
pub fn new(dispatcher: TestDispatcher, fn_name: Option<&'static str>) -> Self {
let arc_dispatcher = Arc::new(dispatcher.clone());
let background_executor = BackgroundExecutor::new(arc_dispatcher.clone());
let foreground_executor = ForegroundExecutor::new(arc_dispatcher);
let platform = TestPlatform::new(background_executor.clone(), foreground_executor.clone());
let asset_source = Arc::new(());
let http_client = http_client::FakeHttpClient::with_404_response();
let text_system = Arc::new(TextSystem::new(platform.text_system()));
Self {
app: App::new_app(platform.clone(), asset_source, http_client),
background_executor,
foreground_executor,
dispatcher: dispatcher.clone(),
test_platform: platform,
text_system,
fn_name,
on_quit: Rc::new(RefCell::new(Vec::default())),
}
}
/// The name of the test function that created this `TestAppContext`
pub fn test_function_name(&self) -> Option<&'static str> {
self.fn_name
}
/// Checks whether there have been any new path prompts received by the platform.
pub fn did_prompt_for_new_path(&self) -> bool {
self.test_platform.did_prompt_for_new_path()
}
/// returns a new `TestAppContext` re-using the same executors to interleave tasks.
pub fn new_app(&self) -> TestAppContext {
Self::new(self.dispatcher.clone(), self.fn_name)
}
/// Called by the test helper to end the test.
/// public so the macro can call it.
pub fn quit(&self) {
self.on_quit.borrow_mut().drain(..).for_each(|f| f());
self.app.borrow_mut().shutdown();
}
/// Register cleanup to run when the test ends.
pub fn on_quit(&mut self, f: impl FnOnce() + 'static) {
self.on_quit.borrow_mut().push(Box::new(f));
}
/// Schedules all windows to be redrawn on the next effect cycle.
pub fn refresh(&mut self) -> Result<()> {
let mut app = self.app.borrow_mut();
app.refresh_windows();
Ok(())
}
/// Returns an executor (for running tasks in the background)
pub fn executor(&self) -> BackgroundExecutor {
self.background_executor.clone()
}
/// Returns an executor (for running tasks on the main thread)
pub fn foreground_executor(&self) -> &ForegroundExecutor {
&self.foreground_executor
}
/// Gives you an `&mut App` for the duration of the closure
pub fn update<R>(&self, f: impl FnOnce(&mut App) -> R) -> R {
let mut cx = self.app.borrow_mut();
cx.update(f)
}
/// Gives you an `&App` for the duration of the closure
pub fn read<R>(&self, f: impl FnOnce(&App) -> R) -> R {
let cx = self.app.borrow();
f(&cx)
}
/// Adds a new window. The Window will always be backed by a `TestWindow` which
/// can be retrieved with `self.test_window(handle)`
pub fn add_window<F, V>(&mut self, build_window: F) -> WindowHandle<V>
where
F: FnOnce(&mut Window, &mut Context<V>) -> V,
V: 'static + Render,
{
let mut cx = self.app.borrow_mut();
// Some tests rely on the window size matching the bounds of the test display
let bounds = Bounds::maximized(None, &mut cx);
cx.open_window(
WindowOptions {
window_bounds: Some(WindowBounds::Windowed(bounds)),
..Default::default()
},
|window, cx| cx.new(|cx| build_window(window, cx)),
)
.unwrap()
}
/// Adds a new window with no content.
pub fn add_empty_window(&mut self) -> &mut VisualTestContext {
let mut cx = self.app.borrow_mut();
let bounds = Bounds::maximized(None, &mut cx);
let window = cx
.open_window(
WindowOptions {
window_bounds: Some(WindowBounds::Windowed(bounds)),
..Default::default()
},
|_, cx| cx.new(|_| Empty),
)
.unwrap();
drop(cx);
let cx = VisualTestContext::from_window(*window.deref(), self).as_mut();
cx.run_until_parked();
cx
}
/// Adds a new window, and returns its root view and a `VisualTestContext` which can be used
/// as a `Window` and `App` for the rest of the test. Typically you would shadow this context with
/// the returned one. `let (view, cx) = cx.add_window_view(...);`
pub fn add_window_view<F, V>(
&mut self,
build_root_view: F,
) -> (Entity<V>, &mut VisualTestContext)
where
F: FnOnce(&mut Window, &mut Context<V>) -> V,
V: 'static + Render,
{
let mut cx = self.app.borrow_mut();
let bounds = Bounds::maximized(None, &mut cx);
let window = cx
.open_window(
WindowOptions {
window_bounds: Some(WindowBounds::Windowed(bounds)),
..Default::default()
},
|window, cx| cx.new(|cx| build_root_view(window, cx)),
)
.unwrap();
drop(cx);
let view = window.root(self).unwrap();
let cx = VisualTestContext::from_window(*window.deref(), self).as_mut();
cx.run_until_parked();
// it might be nice to try and cleanup these at the end of each test.
(view, cx)
}
/// returns the TextSystem
pub fn text_system(&self) -> &Arc<TextSystem> {
&self.text_system
}
/// Simulates writing to the platform clipboard
pub fn write_to_clipboard(&self, item: ClipboardItem) {
self.test_platform.write_to_clipboard(item)
}
/// Simulates reading from the platform clipboard.
/// This will return the most recent value from `write_to_clipboard`.
pub fn read_from_clipboard(&self) -> Option<ClipboardItem> {
self.test_platform.read_from_clipboard()
}
/// Simulates choosing a File in the platform's "Open" dialog.
pub fn simulate_new_path_selection(
&self,
select_path: impl FnOnce(&std::path::Path) -> Option<std::path::PathBuf>,
) {
self.test_platform.simulate_new_path_selection(select_path);
}
/// Simulates clicking a button in an platform-level alert dialog.
#[track_caller]
pub fn simulate_prompt_answer(&self, button: &str) {
self.test_platform.simulate_prompt_answer(button);
}
/// Returns true if there's an alert dialog open.
pub fn has_pending_prompt(&self) -> bool {
self.test_platform.has_pending_prompt()
}
/// Returns true if there's an alert dialog open.
pub fn pending_prompt(&self) -> Option<(String, String)> {
self.test_platform.pending_prompt()
}
/// All the urls that have been opened with cx.open_url() during this test.
pub fn opened_url(&self) -> Option<String> {
self.test_platform.opened_url.borrow().clone()
}
/// Simulates the user resizing the window to the new size.
pub fn simulate_window_resize(&self, window_handle: AnyWindowHandle, size: Size<Pixels>) {
self.test_window(window_handle).simulate_resize(size);
}
/// Causes the given sources to be returned if the application queries for screen
/// capture sources.
pub fn set_screen_capture_sources(&self, sources: Vec<TestScreenCaptureSource>) {
self.test_platform.set_screen_capture_sources(sources);
}
/// Returns all windows open in the test.
pub fn windows(&self) -> Vec<AnyWindowHandle> {
self.app.borrow().windows().clone()
}
/// Run the given task on the main thread.
#[track_caller]
pub fn spawn<Fut, R>(&self, f: impl FnOnce(AsyncApp) -> Fut) -> Task<R>
where
Fut: Future<Output = R> + 'static,
R: 'static,
{
self.foreground_executor.spawn(f(self.to_async()))
}
/// true if the given global is defined
pub fn has_global<G: Global>(&self) -> bool {
let app = self.app.borrow();
app.has_global::<G>()
}
/// runs the given closure with a reference to the global
/// panics if `has_global` would return false.
pub fn read_global<G: Global, R>(&self, read: impl FnOnce(&G, &App) -> R) -> R {
let app = self.app.borrow();
read(app.global(), &app)
}
/// runs the given closure with a reference to the global (if set)
pub fn try_read_global<G: Global, R>(&self, read: impl FnOnce(&G, &App) -> R) -> Option<R> {
let lock = self.app.borrow();
Some(read(lock.try_global()?, &lock))
}
/// sets the global in this context.
pub fn set_global<G: Global>(&mut self, global: G) {
let mut lock = self.app.borrow_mut();
lock.update(|cx| cx.set_global(global))
}
/// updates the global in this context. (panics if `has_global` would return false)
pub fn update_global<G: Global, R>(&mut self, update: impl FnOnce(&mut G, &mut App) -> R) -> R {
let mut lock = self.app.borrow_mut();
lock.update(|cx| cx.update_global(update))
}
/// Returns an `AsyncApp` which can be used to run tasks that expect to be on a background
/// thread on the current thread in tests.
pub fn to_async(&self) -> AsyncApp {
AsyncApp {
app: Rc::downgrade(&self.app),
background_executor: self.background_executor.clone(),
foreground_executor: self.foreground_executor.clone(),
}
}
/// Wait until there are no more pending tasks.
pub fn run_until_parked(&mut self) {
self.background_executor.run_until_parked()
}
/// Simulate dispatching an action to the currently focused node in the window.
pub fn dispatch_action<A>(&mut self, window: AnyWindowHandle, action: A)
where
A: Action,
{
window
.update(self, |_, window, cx| {
window.dispatch_action(action.boxed_clone(), cx)
})
.unwrap();
self.background_executor.run_until_parked()
}
/// simulate_keystrokes takes a space-separated list of keys to type.
/// cx.simulate_keystrokes("cmd-shift-p b k s p enter")
/// in Zed, this will run backspace on the current editor through the command palette.
/// This will also run the background executor until it's parked.
pub fn simulate_keystrokes(&mut self, window: AnyWindowHandle, keystrokes: &str) {
for keystroke in keystrokes
.split(' ')
.map(Keystroke::parse)
.map(Result::unwrap)
{
self.dispatch_keystroke(window, keystroke);
}
self.background_executor.run_until_parked()
}
/// simulate_input takes a string of text to type.
/// cx.simulate_input("abc")
/// will type abc into your current editor
/// This will also run the background executor until it's parked.
pub fn simulate_input(&mut self, window: AnyWindowHandle, input: &str) {
for keystroke in input.split("").map(Keystroke::parse).map(Result::unwrap) {
self.dispatch_keystroke(window, keystroke);
}
self.background_executor.run_until_parked()
}
/// dispatches a single Keystroke (see also `simulate_keystrokes` and `simulate_input`)
pub fn dispatch_keystroke(&mut self, window: AnyWindowHandle, keystroke: Keystroke) {
self.update_window(window, |_, window, cx| {
window.dispatch_keystroke(keystroke, cx)
})
.unwrap();
}
/// Returns the `TestWindow` backing the given handle.
pub(crate) fn test_window(&self, window: AnyWindowHandle) -> TestWindow {
self.app
.borrow_mut()
.windows
.get_mut(window.id)
.unwrap()
.as_mut()
.unwrap()
.platform_window
.as_test()
.unwrap()
.clone()
}
/// Returns a stream of notifications whenever the Entity is updated.
pub fn notifications<T: 'static>(
&mut self,
entity: &Entity<T>,
) -> impl Stream<Item = ()> + use<T> {
let (tx, rx) = futures::channel::mpsc::unbounded();
self.update(|cx| {
cx.observe(entity, {
let tx = tx.clone();
move |_, _| {
let _ = tx.unbounded_send(());
}
})
.detach();
cx.observe_release(entity, move |_, _| tx.close_channel())
.detach()
});
rx
}
/// Returns a stream of events emitted by the given Entity.
pub fn events<Evt, T: 'static + EventEmitter<Evt>>(
&mut self,
entity: &Entity<T>,
) -> futures::channel::mpsc::UnboundedReceiver<Evt>
where
Evt: 'static + Clone,
{
let (tx, rx) = futures::channel::mpsc::unbounded();
entity
.update(self, |_, cx: &mut Context<T>| {
cx.subscribe(entity, move |_entity, _handle, event, _cx| {
let _ = tx.unbounded_send(event.clone());
})
})
.detach();
rx
}
/// Runs until the given condition becomes true. (Prefer `run_until_parked` if you
/// don't need to jump in at a specific time).
pub async fn condition<T: 'static>(
&mut self,
entity: &Entity<T>,
mut predicate: impl FnMut(&mut T, &mut Context<T>) -> bool,
) {
let timer = self.executor().timer(Duration::from_secs(3));
let mut notifications = self.notifications(entity);
use futures::FutureExt as _;
use smol::future::FutureExt as _;
async {
loop {
if entity.update(self, &mut predicate) {
return Ok(());
}
if notifications.next().await.is_none() {
bail!("entity dropped")
}
}
}
.race(timer.map(|_| Err(anyhow!("condition timed out"))))
.await
.unwrap();
}
/// Set a name for this App.
#[cfg(any(test, feature = "test-support"))]
pub fn set_name(&mut self, name: &'static str) {
self.update(|cx| cx.name = Some(name))
}
}
impl<T: 'static> Entity<T> {
/// Block until the next event is emitted by the entity, then return it.
pub fn next_event<Event>(&self, cx: &mut TestAppContext) -> impl Future<Output = Event>
where
Event: Send + Clone + 'static,
T: EventEmitter<Event>,
{
let (tx, mut rx) = oneshot::channel();
let mut tx = Some(tx);
let subscription = self.update(cx, |_, cx| {
cx.subscribe(self, move |_, _, event, _| {
if let Some(tx) = tx.take() {
_ = tx.send(event.clone());
}
})
});
async move {
let event = rx.await.expect("no event emitted");
drop(subscription);
event
}
}
}
impl<V: 'static> Entity<V> {
/// Returns a future that resolves when the view is next updated.
pub fn next_notification(
&self,
advance_clock_by: Duration,
cx: &TestAppContext,
) -> impl Future<Output = ()> {
use postage::prelude::{Sink as _, Stream as _};
let (mut tx, mut rx) = postage::mpsc::channel(1);
let subscription = cx.app.borrow_mut().observe(self, move |_, _| {
tx.try_send(()).ok();
});
let duration = if std::env::var("CI").is_ok() {
Duration::from_secs(5)
} else {
Duration::from_secs(1)
};
cx.executor().advance_clock(advance_clock_by);
async move {
let notification = crate::util::timeout(duration, rx.recv())
.await
.expect("next notification timed out");
drop(subscription);
notification.expect("entity dropped while test was waiting for its next notification")
}
}
}
impl<V> Entity<V> {
/// Returns a future that resolves when the condition becomes true.
pub fn condition<Evt>(
&self,
cx: &TestAppContext,
mut predicate: impl FnMut(&V, &App) -> bool,
) -> impl Future<Output = ()>
where
Evt: 'static,
V: EventEmitter<Evt>,
{
use postage::prelude::{Sink as _, Stream as _};
let (tx, mut rx) = postage::mpsc::channel(1024);
let mut cx = cx.app.borrow_mut();
let subscriptions = (
cx.observe(self, {
let mut tx = tx.clone();
move |_, _| {
tx.blocking_send(()).ok();
}
}),
cx.subscribe(self, {
let mut tx = tx.clone();
move |_, _: &Evt, _| {
tx.blocking_send(()).ok();
}
}),
);
let cx = cx.this.upgrade().unwrap();
let handle = self.downgrade();
async move {
crate::util::timeout(Duration::from_secs(1), async move {
loop {
{
let cx = cx.borrow();
let cx = &*cx;
if predicate(
handle
.upgrade()
.expect("view dropped with pending condition")
.read(cx),
cx,
) {
break;
}
}
cx.borrow().background_executor().start_waiting();
rx.recv()
.await
.expect("view dropped with pending condition");
cx.borrow().background_executor().finish_waiting();
}
})
.await
.expect("condition timed out");
drop(subscriptions);
}
}
}
use derive_more::{Deref, DerefMut};
use super::{Context, Entity};
#[derive(Deref, DerefMut, Clone)]
/// A VisualTestContext is the test-equivalent of a `Window` and `App`. It allows you to
/// run window-specific test code. It can be dereferenced to a `TextAppContext`.
pub struct VisualTestContext {
#[deref]
#[deref_mut]
/// cx is the original TestAppContext (you can more easily access this using Deref)
pub cx: TestAppContext,
window: AnyWindowHandle,
}
impl VisualTestContext {
/// Provides a `Window` and `App` for the duration of the closure.
pub fn update<R>(&mut self, f: impl FnOnce(&mut Window, &mut App) -> R) -> R {
self.cx
.update_window(self.window, |_, window, cx| f(window, cx))
.unwrap()
}
/// Creates a new VisualTestContext. You would typically shadow the passed in
/// TestAppContext with this, as this is typically more useful.
/// `let cx = VisualTestContext::from_window(window, cx);`
pub fn from_window(window: AnyWindowHandle, cx: &TestAppContext) -> Self {
Self {
cx: cx.clone(),
window,
}
}
/// Wait until there are no more pending tasks.
pub fn run_until_parked(&self) {
self.cx.background_executor.run_until_parked();
}
/// Dispatch the action to the currently focused node.
pub fn dispatch_action<A>(&mut self, action: A)
where
A: Action,
{
self.cx.dispatch_action(self.window, action)
}
/// Read the title off the window (set by `Window#set_window_title`)
pub fn window_title(&mut self) -> Option<String> {
self.cx.test_window(self.window).0.lock().title.clone()
}
/// Simulate a sequence of keystrokes `cx.simulate_keystrokes("cmd-p escape")`
/// Automatically runs until parked.
pub fn simulate_keystrokes(&mut self, keystrokes: &str) {
self.cx.simulate_keystrokes(self.window, keystrokes)
}
/// Simulate typing text `cx.simulate_input("hello")`
/// Automatically runs until parked.
pub fn simulate_input(&mut self, input: &str) {
self.cx.simulate_input(self.window, input)
}
/// Simulate a mouse move event to the given point
pub fn simulate_mouse_move(
&mut self,
position: Point<Pixels>,
button: impl Into<Option<MouseButton>>,
modifiers: Modifiers,
) {
self.simulate_event(MouseMoveEvent {
position,
modifiers,
pressed_button: button.into(),
})
}
/// Simulate a mouse down event to the given point
pub fn simulate_mouse_down(
&mut self,
position: Point<Pixels>,
button: MouseButton,
modifiers: Modifiers,
) {
self.simulate_event(MouseDownEvent {
position,
modifiers,
button,
click_count: 1,
first_mouse: false,
})
}
/// Simulate a mouse up event to the given point
pub fn simulate_mouse_up(
&mut self,
position: Point<Pixels>,
button: MouseButton,
modifiers: Modifiers,
) {
self.simulate_event(MouseUpEvent {
position,
modifiers,
button,
click_count: 1,
})
}
/// Simulate a primary mouse click at the given point
pub fn simulate_click(&mut self, position: Point<Pixels>, modifiers: Modifiers) {
self.simulate_event(MouseDownEvent {
position,
modifiers,
button: MouseButton::Left,
click_count: 1,
first_mouse: false,
});
self.simulate_event(MouseUpEvent {
position,
modifiers,
button: MouseButton::Left,
click_count: 1,
});
}
/// Simulate a modifiers changed event
pub fn simulate_modifiers_change(&mut self, modifiers: Modifiers) {
self.simulate_event(ModifiersChangedEvent { modifiers })
}
/// Simulates the user resizing the window to the new size.
pub fn simulate_resize(&self, size: Size<Pixels>) {
self.simulate_window_resize(self.window, size)
}
/// debug_bounds returns the bounds of the element with the given selector.
pub fn debug_bounds(&mut self, selector: &'static str) -> Option<Bounds<Pixels>> {
self.update(|window, _| window.rendered_frame.debug_bounds.get(selector).copied())
}
/// Draw an element to the window. Useful for simulating events or actions
pub fn draw<E>(
&mut self,
origin: Point<Pixels>,
space: impl Into<Size<AvailableSpace>>,
f: impl FnOnce(&mut Window, &mut App) -> E,
) -> (E::RequestLayoutState, E::PrepaintState)
where
E: Element,
{
self.update(|window, cx| {
window.invalidator.set_phase(DrawPhase::Prepaint);
let mut element = Drawable::new(f(window, cx));
element.layout_as_root(space.into(), window, cx);
window.with_absolute_element_offset(origin, |window| element.prepaint(window, cx));
window.invalidator.set_phase(DrawPhase::Paint);
let (request_layout_state, prepaint_state) = element.paint(window, cx);
window.invalidator.set_phase(DrawPhase::None);
window.refresh();
(request_layout_state, prepaint_state)
})
}
/// Simulate an event from the platform, e.g. a SrollWheelEvent
/// Make sure you've called [VisualTestContext::draw] first!
pub fn simulate_event<E: InputEvent>(&mut self, event: E) {
self.test_window(self.window)
.simulate_input(event.to_platform_input());
self.background_executor.run_until_parked();
}
/// Simulates the user blurring the window.
pub fn deactivate_window(&mut self) {
if Some(self.window) == self.test_platform.active_window() {
self.test_platform.set_active_window(None)
}
self.background_executor.run_until_parked();
}
/// Simulates the user closing the window.
/// Returns true if the window was closed.
pub fn simulate_close(&mut self) -> bool {
let handler = self
.cx
.update_window(self.window, |_, window, _| {
window
.platform_window
.as_test()
.unwrap()
.0
.lock()
.should_close_handler
.take()
})
.unwrap();
if let Some(mut handler) = handler {
let should_close = handler();
self.cx
.update_window(self.window, |_, window, _| {
window.platform_window.on_should_close(handler);
})
.unwrap();
should_close
} else {
false
}
}
/// Get an &mut VisualTestContext (which is mostly what you need to pass to other methods).
/// This method internally retains the VisualTestContext until the end of the test.
pub fn as_mut(self) -> &'static mut Self {
let ptr = Box::into_raw(Box::new(self));
// safety: on_quit will be called after the test has finished.
// the executor will ensure that all tasks related to the test have stopped.
// so there is no way for cx to be accessed after on_quit is called.
let cx = Box::leak(unsafe { Box::from_raw(ptr) });
cx.on_quit(move || unsafe {
drop(Box::from_raw(ptr));
});
cx
}
}
impl AppContext for VisualTestContext {
type Result<T> = <TestAppContext as AppContext>::Result<T>;
fn new<T: 'static>(
&mut self,
build_entity: impl FnOnce(&mut Context<T>) -> T,
) -> Self::Result<Entity<T>> {
self.cx.new(build_entity)
}
fn reserve_entity<T: 'static>(&mut self) -> Self::Result<crate::Reservation<T>> {
self.cx.reserve_entity()
}
fn insert_entity<T: 'static>(
&mut self,
reservation: crate::Reservation<T>,
build_entity: impl FnOnce(&mut Context<T>) -> T,
) -> Self::Result<Entity<T>> {
self.cx.insert_entity(reservation, build_entity)
}
fn update_entity<T, R>(
&mut self,
handle: &Entity<T>,
update: impl FnOnce(&mut T, &mut Context<T>) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.cx.update_entity(handle, update)
}
fn read_entity<T, R>(
&self,
handle: &Entity<T>,
read: impl FnOnce(&T, &App) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.cx.read_entity(handle, read)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, f: F) -> Result<T>
where
F: FnOnce(AnyView, &mut Window, &mut App) -> T,
{
self.cx.update_window(window, f)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(Entity<T>, &App) -> R,
) -> Result<R>
where
T: 'static,
{
self.cx.read_window(window, read)
}
fn background_spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
where
R: Send + 'static,
{
self.cx.background_spawn(future)
}
fn read_global<G, R>(&self, callback: impl FnOnce(&G, &App) -> R) -> Self::Result<R>
where
G: Global,
{
self.cx.read_global(callback)
}
}
impl VisualContext for VisualTestContext {
/// Get the underlying window handle underlying this context.
fn window_handle(&self) -> AnyWindowHandle {
self.window
}
fn new_window_entity<T: 'static>(
&mut self,
build_entity: impl FnOnce(&mut Window, &mut Context<T>) -> T,
) -> Self::Result<Entity<T>> {
self.window
.update(&mut self.cx, |_, window, cx| {
cx.new(|cx| build_entity(window, cx))
})
.unwrap()
}
fn update_window_entity<V: 'static, R>(
&mut self,
view: &Entity<V>,
update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
) -> Self::Result<R> {
self.window
.update(&mut self.cx, |_, window, cx| {
view.update(cx, |v, cx| update(v, window, cx))
})
.unwrap()
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut Window, &mut Context<V>) -> V,
) -> Self::Result<Entity<V>>
where
V: 'static + Render,
{
self.window
.update(&mut self.cx, |_, window, cx| {
window.replace_root(cx, build_view)
})
.unwrap()
}
fn focus<V: crate::Focusable>(&mut self, view: &Entity<V>) -> Self::Result<()> {
self.window
.update(&mut self.cx, |_, window, cx| {
view.read(cx).focus_handle(cx).clone().focus(window)
})
.unwrap()
}
}
impl AnyWindowHandle {
/// Creates the given view in this window.
pub fn build_entity<V: Render + 'static>(
&self,
cx: &mut TestAppContext,
build_view: impl FnOnce(&mut Window, &mut Context<V>) -> V,
) -> Entity<V> {
self.update(cx, |_, window, cx| cx.new(|cx| build_view(window, cx)))
.unwrap()
}
}