
Currently, the rendering path required creating a texture for each path, which wasted a large amount of video memory. In our application, simply drawing some charts resulted in video memory usage as high as 5G. I removed the step of creating path textures and directly drew the paths on the rendering target, adding post-processing global multi-sampling anti-aliasing. Drawing paths no longer requires allocating any additional video memory and also improves the performance of path rendering. Release Notes: - N/A --------- Co-authored-by: Jason Lee <huacnlee@gmail.com>
1190 lines
44 KiB
WebGPU Shading Language
1190 lines
44 KiB
WebGPU Shading Language
/* Functions useful for debugging:
|
|
|
|
// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
|
|
fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
|
|
// Normalize value to 0-1 range
|
|
let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
|
|
|
|
// Heat map color calculation
|
|
let r = t * t;
|
|
let g = 4.0 * t * (1.0 - t);
|
|
let b = (1.0 - t) * (1.0 - t);
|
|
let heat_color = vec3<f32>(r, g, b);
|
|
|
|
// Create a checkerboard pattern (black and white)
|
|
let sum = floor(position.x / 3) + floor(position.y / 3);
|
|
let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
|
|
let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
|
|
let checker_color = vec3<f32>(checker_value);
|
|
|
|
// Determine if value is in range (1.0 if in range, 0.0 if out of range)
|
|
let in_range = step(minValue, value) * step(value, maxValue);
|
|
|
|
// Mix checkerboard and heat map based on whether value is in range
|
|
let final_color = mix(checker_color, heat_color, in_range);
|
|
|
|
return vec4<f32>(final_color, 1.0);
|
|
}
|
|
|
|
*/
|
|
|
|
struct GlobalParams {
|
|
viewport_size: vec2<f32>,
|
|
premultiplied_alpha: u32,
|
|
pad: u32,
|
|
}
|
|
|
|
var<uniform> globals: GlobalParams;
|
|
var t_sprite: texture_2d<f32>;
|
|
var s_sprite: sampler;
|
|
|
|
const M_PI_F: f32 = 3.1415926;
|
|
const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
|
|
|
|
struct Bounds {
|
|
origin: vec2<f32>,
|
|
size: vec2<f32>,
|
|
}
|
|
|
|
struct Corners {
|
|
top_left: f32,
|
|
top_right: f32,
|
|
bottom_right: f32,
|
|
bottom_left: f32,
|
|
}
|
|
|
|
struct Edges {
|
|
top: f32,
|
|
right: f32,
|
|
bottom: f32,
|
|
left: f32,
|
|
}
|
|
|
|
struct Hsla {
|
|
h: f32,
|
|
s: f32,
|
|
l: f32,
|
|
a: f32,
|
|
}
|
|
|
|
struct LinearColorStop {
|
|
color: Hsla,
|
|
percentage: f32,
|
|
}
|
|
|
|
struct Background {
|
|
// 0u is Solid
|
|
// 1u is LinearGradient
|
|
// 2u is PatternSlash
|
|
tag: u32,
|
|
// 0u is sRGB linear color
|
|
// 1u is Oklab color
|
|
color_space: u32,
|
|
solid: Hsla,
|
|
gradient_angle_or_pattern_height: f32,
|
|
colors: array<LinearColorStop, 2>,
|
|
pad: u32,
|
|
}
|
|
|
|
struct AtlasTextureId {
|
|
index: u32,
|
|
kind: u32,
|
|
}
|
|
|
|
struct AtlasBounds {
|
|
origin: vec2<i32>,
|
|
size: vec2<i32>,
|
|
}
|
|
|
|
struct AtlasTile {
|
|
texture_id: AtlasTextureId,
|
|
tile_id: u32,
|
|
padding: u32,
|
|
bounds: AtlasBounds,
|
|
}
|
|
|
|
struct TransformationMatrix {
|
|
rotation_scale: mat2x2<f32>,
|
|
translation: vec2<f32>,
|
|
}
|
|
|
|
fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
|
|
let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
|
|
return vec4<f32>(device_position, 0.0, 1.0);
|
|
}
|
|
|
|
fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
|
|
let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
|
|
return to_device_position_impl(position);
|
|
}
|
|
|
|
fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
|
|
let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
|
|
//Note: Rust side stores it as row-major, so transposing here
|
|
let transformed = transpose(transform.rotation_scale) * position + transform.translation;
|
|
return to_device_position_impl(transformed);
|
|
}
|
|
|
|
fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
|
|
let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
|
|
return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
|
|
}
|
|
|
|
fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
|
|
let tl = position - clip_bounds.origin;
|
|
let br = clip_bounds.origin + clip_bounds.size - position;
|
|
return vec4<f32>(tl.x, br.x, tl.y, br.y);
|
|
}
|
|
|
|
fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
|
|
let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
|
|
return distance_from_clip_rect_impl(position, clip_bounds);
|
|
}
|
|
|
|
// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
|
|
fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
|
|
let cutoff = srgb < vec3<f32>(0.04045);
|
|
let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
|
|
let lower = srgb / vec3<f32>(12.92);
|
|
return select(higher, lower, cutoff);
|
|
}
|
|
|
|
fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
|
|
let cutoff = linear < vec3<f32>(0.0031308);
|
|
let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
|
|
let lower = linear * vec3<f32>(12.92);
|
|
return select(higher, lower, cutoff);
|
|
}
|
|
|
|
/// Convert a linear color to sRGBA space.
|
|
fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
|
|
return vec4<f32>(linear_to_srgb(color.rgb), color.a);
|
|
}
|
|
|
|
/// Convert a sRGBA color to linear space.
|
|
fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
|
|
return vec4<f32>(srgb_to_linear(color.rgb), color.a);
|
|
}
|
|
|
|
/// Hsla to linear RGBA conversion.
|
|
fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
|
|
let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
|
|
let s = hsla.s;
|
|
let l = hsla.l;
|
|
let a = hsla.a;
|
|
|
|
let c = (1.0 - abs(2.0 * l - 1.0)) * s;
|
|
let x = c * (1.0 - abs(h % 2.0 - 1.0));
|
|
let m = l - c / 2.0;
|
|
var color = vec3<f32>(m);
|
|
|
|
if (h >= 0.0 && h < 1.0) {
|
|
color.r += c;
|
|
color.g += x;
|
|
} else if (h >= 1.0 && h < 2.0) {
|
|
color.r += x;
|
|
color.g += c;
|
|
} else if (h >= 2.0 && h < 3.0) {
|
|
color.g += c;
|
|
color.b += x;
|
|
} else if (h >= 3.0 && h < 4.0) {
|
|
color.g += x;
|
|
color.b += c;
|
|
} else if (h >= 4.0 && h < 5.0) {
|
|
color.r += x;
|
|
color.b += c;
|
|
} else {
|
|
color.r += c;
|
|
color.b += x;
|
|
}
|
|
|
|
// Input colors are assumed to be in sRGB space,
|
|
// but blending and rendering needs to happen in linear space.
|
|
// The output will be converted to sRGB by either the target
|
|
// texture format or the swapchain color space.
|
|
let linear = srgb_to_linear(color);
|
|
return vec4<f32>(linear, a);
|
|
}
|
|
|
|
/// Convert a linear sRGB to Oklab space.
|
|
/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
|
|
fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
|
|
let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
|
|
let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
|
|
let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
|
|
|
|
let l_ = pow(l, 1.0 / 3.0);
|
|
let m_ = pow(m, 1.0 / 3.0);
|
|
let s_ = pow(s, 1.0 / 3.0);
|
|
|
|
return vec4<f32>(
|
|
0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
|
|
1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
|
|
0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
|
|
color.a
|
|
);
|
|
}
|
|
|
|
/// Convert an Oklab color to linear sRGB space.
|
|
fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
|
|
let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
|
|
let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
|
|
let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
|
|
|
|
let l = l_ * l_ * l_;
|
|
let m = m_ * m_ * m_;
|
|
let s = s_ * s_ * s_;
|
|
|
|
return vec4<f32>(
|
|
4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
|
|
-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
|
|
-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
|
|
color.a
|
|
);
|
|
}
|
|
|
|
fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
|
|
let alpha = above.a + below.a * (1.0 - above.a);
|
|
let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
|
|
return vec4<f32>(color, alpha);
|
|
}
|
|
|
|
// A standard gaussian function, used for weighting samples
|
|
fn gaussian(x: f32, sigma: f32) -> f32{
|
|
return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
|
|
}
|
|
|
|
// This approximates the error function, needed for the gaussian integral
|
|
fn erf(v: vec2<f32>) -> vec2<f32> {
|
|
let s = sign(v);
|
|
let a = abs(v);
|
|
let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
|
|
let r2 = r1 * r1;
|
|
return s - s / (r2 * r2);
|
|
}
|
|
|
|
fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
|
|
let delta = min(half_size.y - corner - abs(y), 0.0);
|
|
let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
|
|
let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
|
|
return integral.y - integral.x;
|
|
}
|
|
|
|
// Selects corner radius based on quadrant.
|
|
fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
|
|
if (center_to_point.x < 0.0) {
|
|
if (center_to_point.y < 0.0) {
|
|
return radii.top_left;
|
|
} else {
|
|
return radii.bottom_left;
|
|
}
|
|
} else {
|
|
if (center_to_point.y < 0.0) {
|
|
return radii.top_right;
|
|
} else {
|
|
return radii.bottom_right;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Signed distance of the point to the quad's border - positive outside the
|
|
// border, and negative inside.
|
|
//
|
|
// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
|
|
// explanation.
|
|
fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
|
|
let half_size = bounds.size / 2.0;
|
|
let center = bounds.origin + half_size;
|
|
let center_to_point = point - center;
|
|
let corner_radius = pick_corner_radius(center_to_point, corner_radii);
|
|
let corner_to_point = abs(center_to_point) - half_size;
|
|
let corner_center_to_point = corner_to_point + corner_radius;
|
|
return quad_sdf_impl(corner_center_to_point, corner_radius);
|
|
}
|
|
|
|
fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
|
|
if (corner_radius == 0.0) {
|
|
// Fast path for unrounded corners.
|
|
return max(corner_center_to_point.x, corner_center_to_point.y);
|
|
} else {
|
|
// Signed distance of the point from a quad that is inset by corner_radius.
|
|
// It is negative inside this quad, and positive outside.
|
|
let signed_distance_to_inset_quad =
|
|
// 0 inside the inset quad, and positive outside.
|
|
length(max(vec2<f32>(0.0), corner_center_to_point)) +
|
|
// 0 outside the inset quad, and negative inside.
|
|
min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
|
|
|
|
return signed_distance_to_inset_quad - corner_radius;
|
|
}
|
|
}
|
|
|
|
// Abstract away the final color transformation based on the
|
|
// target alpha compositing mode.
|
|
fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
|
|
let alpha = color.a * alpha_factor;
|
|
let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
|
|
return vec4<f32>(color.rgb * multiplier, alpha);
|
|
}
|
|
|
|
|
|
struct GradientColor {
|
|
solid: vec4<f32>,
|
|
color0: vec4<f32>,
|
|
color1: vec4<f32>,
|
|
}
|
|
|
|
fn prepare_gradient_color(tag: u32, color_space: u32,
|
|
solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
|
|
var result = GradientColor();
|
|
|
|
if (tag == 0u || tag == 2u) {
|
|
result.solid = hsla_to_rgba(solid);
|
|
} else if (tag == 1u) {
|
|
// The hsla_to_rgba is returns a linear sRGB color
|
|
result.color0 = hsla_to_rgba(colors[0].color);
|
|
result.color1 = hsla_to_rgba(colors[1].color);
|
|
|
|
// Prepare color space in vertex for avoid conversion
|
|
// in fragment shader for performance reasons
|
|
if (color_space == 0u) {
|
|
// sRGB
|
|
result.color0 = linear_to_srgba(result.color0);
|
|
result.color1 = linear_to_srgba(result.color1);
|
|
} else if (color_space == 1u) {
|
|
// Oklab
|
|
result.color0 = linear_srgb_to_oklab(result.color0);
|
|
result.color1 = linear_srgb_to_oklab(result.color1);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
|
|
solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
|
|
var background_color = vec4<f32>(0.0);
|
|
|
|
switch (background.tag) {
|
|
default: {
|
|
return solid_color;
|
|
}
|
|
case 1u: {
|
|
// Linear gradient background.
|
|
// -90 degrees to match the CSS gradient angle.
|
|
let angle = background.gradient_angle_or_pattern_height;
|
|
let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
|
|
var direction = vec2<f32>(cos(radians), sin(radians));
|
|
let stop0_percentage = background.colors[0].percentage;
|
|
let stop1_percentage = background.colors[1].percentage;
|
|
|
|
// Expand the short side to be the same as the long side
|
|
if (bounds.size.x > bounds.size.y) {
|
|
direction.y *= bounds.size.y / bounds.size.x;
|
|
} else {
|
|
direction.x *= bounds.size.x / bounds.size.y;
|
|
}
|
|
|
|
// Get the t value for the linear gradient with the color stop percentages.
|
|
let half_size = bounds.size / 2.0;
|
|
let center = bounds.origin + half_size;
|
|
let center_to_point = position - center;
|
|
var t = dot(center_to_point, direction) / length(direction);
|
|
// Check the direct to determine the use x or y
|
|
if (abs(direction.x) > abs(direction.y)) {
|
|
t = (t + half_size.x) / bounds.size.x;
|
|
} else {
|
|
t = (t + half_size.y) / bounds.size.y;
|
|
}
|
|
|
|
// Adjust t based on the stop percentages
|
|
t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
|
|
t = clamp(t, 0.0, 1.0);
|
|
|
|
switch (background.color_space) {
|
|
default: {
|
|
background_color = srgba_to_linear(mix(color0, color1, t));
|
|
}
|
|
case 1u: {
|
|
let oklab_color = mix(color0, color1, t);
|
|
background_color = oklab_to_linear_srgb(oklab_color);
|
|
}
|
|
}
|
|
}
|
|
case 2u: {
|
|
let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
|
|
let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
|
|
let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
|
|
let pattern_height = pattern_width + pattern_interval;
|
|
let stripe_angle = M_PI_F / 4.0;
|
|
let pattern_period = pattern_height * sin(stripe_angle);
|
|
let rotation = mat2x2<f32>(
|
|
cos(stripe_angle), -sin(stripe_angle),
|
|
sin(stripe_angle), cos(stripe_angle)
|
|
);
|
|
let relative_position = position - bounds.origin;
|
|
let rotated_point = rotation * relative_position;
|
|
let pattern = rotated_point.x % pattern_period;
|
|
let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) / 2.0f;
|
|
background_color = solid_color;
|
|
background_color.a *= saturate(0.5 - distance);
|
|
}
|
|
}
|
|
|
|
return background_color;
|
|
}
|
|
|
|
// --- quads --- //
|
|
|
|
struct Quad {
|
|
order: u32,
|
|
border_style: u32,
|
|
bounds: Bounds,
|
|
content_mask: Bounds,
|
|
background: Background,
|
|
border_color: Hsla,
|
|
corner_radii: Corners,
|
|
border_widths: Edges,
|
|
}
|
|
var<storage, read> b_quads: array<Quad>;
|
|
|
|
struct QuadVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) @interpolate(flat) border_color: vec4<f32>,
|
|
@location(1) @interpolate(flat) quad_id: u32,
|
|
// TODO: use `clip_distance` once Naga supports it
|
|
@location(2) clip_distances: vec4<f32>,
|
|
@location(3) @interpolate(flat) background_solid: vec4<f32>,
|
|
@location(4) @interpolate(flat) background_color0: vec4<f32>,
|
|
@location(5) @interpolate(flat) background_color1: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
let quad = b_quads[instance_id];
|
|
|
|
var out = QuadVarying();
|
|
out.position = to_device_position(unit_vertex, quad.bounds);
|
|
|
|
let gradient = prepare_gradient_color(
|
|
quad.background.tag,
|
|
quad.background.color_space,
|
|
quad.background.solid,
|
|
quad.background.colors
|
|
);
|
|
out.background_solid = gradient.solid;
|
|
out.background_color0 = gradient.color0;
|
|
out.background_color1 = gradient.color1;
|
|
out.border_color = hsla_to_rgba(quad.border_color);
|
|
out.quad_id = instance_id;
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
|
|
// Alpha clip first, since we don't have `clip_distance`.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let quad = b_quads[input.quad_id];
|
|
|
|
let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
|
|
input.background_solid, input.background_color0, input.background_color1);
|
|
|
|
let unrounded = quad.corner_radii.top_left == 0.0 &&
|
|
quad.corner_radii.bottom_left == 0.0 &&
|
|
quad.corner_radii.top_right == 0.0 &&
|
|
quad.corner_radii.bottom_right == 0.0;
|
|
|
|
// Fast path when the quad is not rounded and doesn't have any border
|
|
if (quad.border_widths.top == 0.0 &&
|
|
quad.border_widths.left == 0.0 &&
|
|
quad.border_widths.right == 0.0 &&
|
|
quad.border_widths.bottom == 0.0 &&
|
|
unrounded) {
|
|
return blend_color(background_color, 1.0);
|
|
}
|
|
|
|
let size = quad.bounds.size;
|
|
let half_size = size / 2.0;
|
|
let point = input.position.xy - quad.bounds.origin;
|
|
let center_to_point = point - half_size;
|
|
|
|
// Signed distance field threshold for inclusion of pixels. 0.5 is the
|
|
// minimum distance between the center of the pixel and the edge.
|
|
let antialias_threshold = 0.5;
|
|
|
|
// Radius of the nearest corner
|
|
let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
|
|
|
|
// Width of the nearest borders
|
|
let border = vec2<f32>(
|
|
select(
|
|
quad.border_widths.right,
|
|
quad.border_widths.left,
|
|
center_to_point.x < 0.0),
|
|
select(
|
|
quad.border_widths.bottom,
|
|
quad.border_widths.top,
|
|
center_to_point.y < 0.0));
|
|
|
|
// 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
|
|
// The purpose of this is to not draw antialiasing pixels in this case.
|
|
let reduced_border =
|
|
vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
|
|
select(border.y, -antialias_threshold, border.y == 0.0));
|
|
|
|
// Vector from the corner of the quad bounds to the point, after mirroring
|
|
// the point into the bottom right quadrant. Both components are <= 0.
|
|
let corner_to_point = abs(center_to_point) - half_size;
|
|
|
|
// Vector from the point to the center of the rounded corner's circle, also
|
|
// mirrored into bottom right quadrant.
|
|
let corner_center_to_point = corner_to_point + corner_radius;
|
|
|
|
// Whether the nearest point on the border is rounded
|
|
let is_near_rounded_corner =
|
|
corner_center_to_point.x >= 0 &&
|
|
corner_center_to_point.y >= 0;
|
|
|
|
// Vector from straight border inner corner to point.
|
|
let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
|
|
|
|
// Whether the point is beyond the inner edge of the straight border.
|
|
let is_beyond_inner_straight_border =
|
|
straight_border_inner_corner_to_point.x > 0 ||
|
|
straight_border_inner_corner_to_point.y > 0;
|
|
|
|
// Whether the point is far enough inside the quad, such that the pixels are
|
|
// not affected by the straight border.
|
|
let is_within_inner_straight_border =
|
|
straight_border_inner_corner_to_point.x < -antialias_threshold &&
|
|
straight_border_inner_corner_to_point.y < -antialias_threshold;
|
|
|
|
// Fast path for points that must be part of the background.
|
|
//
|
|
// This could be optimized further for large rounded corners by including
|
|
// points in an inscribed rectangle, or some other quick linear check.
|
|
// However, that might negatively impact performance in the case of
|
|
// reasonable sizes for rounded corners.
|
|
if (is_within_inner_straight_border && !is_near_rounded_corner) {
|
|
return blend_color(background_color, 1.0);
|
|
}
|
|
|
|
// Signed distance of the point to the outside edge of the quad's border. It
|
|
// is positive outside this edge, and negative inside.
|
|
let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
|
|
|
|
// Approximate signed distance of the point to the inside edge of the quad's
|
|
// border. It is negative outside this edge (within the border), and
|
|
// positive inside.
|
|
//
|
|
// This is not always an accurate signed distance:
|
|
// * The rounded portions with varying border width use an approximation of
|
|
// nearest-point-on-ellipse.
|
|
// * When it is quickly known to be outside the edge, -1.0 is used.
|
|
var inner_sdf = 0.0;
|
|
if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
|
|
// Fast paths for straight borders.
|
|
inner_sdf = -max(straight_border_inner_corner_to_point.x,
|
|
straight_border_inner_corner_to_point.y);
|
|
} else if (is_beyond_inner_straight_border) {
|
|
// Fast path for points that must be outside the inner edge.
|
|
inner_sdf = -1.0;
|
|
} else if (reduced_border.x == reduced_border.y) {
|
|
// Fast path for circular inner edge.
|
|
inner_sdf = -(outer_sdf + reduced_border.x);
|
|
} else {
|
|
let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
|
|
inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
|
|
}
|
|
|
|
// Negative when inside the border
|
|
let border_sdf = max(inner_sdf, outer_sdf);
|
|
|
|
var color = background_color;
|
|
if (border_sdf < antialias_threshold) {
|
|
var border_color = input.border_color;
|
|
|
|
// Dashed border logic when border_style == 1
|
|
if (quad.border_style == 1) {
|
|
// Position along the perimeter in "dash space", where each dash
|
|
// period has length 1
|
|
var t = 0.0;
|
|
|
|
// Total number of dash periods, so that the dash spacing can be
|
|
// adjusted to evenly divide it
|
|
var max_t = 0.0;
|
|
|
|
// Border width is proportional to dash size. This is the behavior
|
|
// used by browsers, but also avoids dashes from different segments
|
|
// overlapping when dash size is smaller than the border width.
|
|
//
|
|
// Dash pattern: (2 * border width) dash, (1 * border width) gap
|
|
let dash_length_per_width = 2.0;
|
|
let dash_gap_per_width = 1.0;
|
|
let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
|
|
|
|
// Since the dash size is determined by border width, the density of
|
|
// dashes varies. Multiplying a pixel distance by this returns a
|
|
// position in dash space - it has units (dash period / pixels). So
|
|
// a dash velocity of (1 / 10) is 1 dash every 10 pixels.
|
|
var dash_velocity = 0.0;
|
|
|
|
// Dividing this by the border width gives the dash velocity
|
|
let dv_numerator = 1.0 / dash_period_per_width;
|
|
|
|
if (unrounded) {
|
|
// When corners aren't rounded, the dashes are separately laid
|
|
// out on each straight line, rather than around the whole
|
|
// perimeter. This way each line starts and ends with a dash.
|
|
let is_horizontal =
|
|
corner_center_to_point.x <
|
|
corner_center_to_point.y;
|
|
let border_width = select(border.y, border.x, is_horizontal);
|
|
dash_velocity = dv_numerator / border_width;
|
|
t = select(point.y, point.x, is_horizontal) * dash_velocity;
|
|
max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
|
|
} else {
|
|
// When corners are rounded, the dashes are laid out clockwise
|
|
// around the whole perimeter.
|
|
|
|
let r_tr = quad.corner_radii.top_right;
|
|
let r_br = quad.corner_radii.bottom_right;
|
|
let r_bl = quad.corner_radii.bottom_left;
|
|
let r_tl = quad.corner_radii.top_left;
|
|
|
|
let w_t = quad.border_widths.top;
|
|
let w_r = quad.border_widths.right;
|
|
let w_b = quad.border_widths.bottom;
|
|
let w_l = quad.border_widths.left;
|
|
|
|
// Straight side dash velocities
|
|
let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
|
|
let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
|
|
let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
|
|
let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
|
|
|
|
// Straight side lengths in dash space
|
|
let s_t = (size.x - r_tl - r_tr) * dv_t;
|
|
let s_r = (size.y - r_tr - r_br) * dv_r;
|
|
let s_b = (size.x - r_br - r_bl) * dv_b;
|
|
let s_l = (size.y - r_bl - r_tl) * dv_l;
|
|
|
|
let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
|
|
let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
|
|
let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
|
|
let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
|
|
|
|
// Corner lengths in dash space
|
|
let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
|
|
let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
|
|
let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
|
|
let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
|
|
|
|
// Cumulative dash space upto each segment
|
|
let upto_tr = s_t;
|
|
let upto_r = upto_tr + c_tr;
|
|
let upto_br = upto_r + s_r;
|
|
let upto_b = upto_br + c_br;
|
|
let upto_bl = upto_b + s_b;
|
|
let upto_l = upto_bl + c_bl;
|
|
let upto_tl = upto_l + s_l;
|
|
max_t = upto_tl + c_tl;
|
|
|
|
if (is_near_rounded_corner) {
|
|
let radians = atan2(corner_center_to_point.y,
|
|
corner_center_to_point.x);
|
|
let corner_t = radians * corner_radius;
|
|
|
|
if (center_to_point.x >= 0.0) {
|
|
if (center_to_point.y < 0.0) {
|
|
dash_velocity = corner_dash_velocity_tr;
|
|
// Subtracted because radians is pi/2 to 0 when
|
|
// going clockwise around the top right corner,
|
|
// since the y axis has been flipped
|
|
t = upto_r - corner_t * dash_velocity;
|
|
} else {
|
|
dash_velocity = corner_dash_velocity_br;
|
|
// Added because radians is 0 to pi/2 when going
|
|
// clockwise around the bottom-right corner
|
|
t = upto_br + corner_t * dash_velocity;
|
|
}
|
|
} else {
|
|
if (center_to_point.y >= 0.0) {
|
|
dash_velocity = corner_dash_velocity_bl;
|
|
// Subtracted because radians is pi/2 to 0 when
|
|
// going clockwise around the bottom-left corner,
|
|
// since the x axis has been flipped
|
|
t = upto_l - corner_t * dash_velocity;
|
|
} else {
|
|
dash_velocity = corner_dash_velocity_tl;
|
|
// Added because radians is 0 to pi/2 when going
|
|
// clockwise around the top-left corner, since both
|
|
// axis were flipped
|
|
t = upto_tl + corner_t * dash_velocity;
|
|
}
|
|
}
|
|
} else {
|
|
// Straight borders
|
|
let is_horizontal =
|
|
corner_center_to_point.x <
|
|
corner_center_to_point.y;
|
|
if (is_horizontal) {
|
|
if (center_to_point.y < 0.0) {
|
|
dash_velocity = dv_t;
|
|
t = (point.x - r_tl) * dash_velocity;
|
|
} else {
|
|
dash_velocity = dv_b;
|
|
t = upto_bl - (point.x - r_bl) * dash_velocity;
|
|
}
|
|
} else {
|
|
if (center_to_point.x < 0.0) {
|
|
dash_velocity = dv_l;
|
|
t = upto_tl - (point.y - r_tl) * dash_velocity;
|
|
} else {
|
|
dash_velocity = dv_r;
|
|
t = upto_r + (point.y - r_tr) * dash_velocity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let dash_length = dash_length_per_width / dash_period_per_width;
|
|
let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
|
|
|
|
// Straight borders should start and end with a dash, so max_t is
|
|
// reduced to cause this.
|
|
max_t -= select(0.0, dash_length, unrounded);
|
|
if (max_t >= 1.0) {
|
|
// Adjust dash gap to evenly divide max_t.
|
|
let dash_count = floor(max_t);
|
|
let dash_period = max_t / dash_count;
|
|
border_color.a *= dash_alpha(
|
|
t,
|
|
dash_period,
|
|
dash_length,
|
|
dash_velocity,
|
|
antialias_threshold);
|
|
} else if (unrounded) {
|
|
// When there isn't enough space for the full gap between the
|
|
// two start / end dashes of a straight border, reduce gap to
|
|
// make them fit.
|
|
let dash_gap = max_t - dash_length;
|
|
if (dash_gap > 0.0) {
|
|
let dash_period = dash_length + dash_gap;
|
|
border_color.a *= dash_alpha(
|
|
t,
|
|
dash_period,
|
|
dash_length,
|
|
dash_velocity,
|
|
antialias_threshold);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Blend the border on top of the background and then linearly interpolate
|
|
// between the two as we slide inside the background.
|
|
let blended_border = over(background_color, border_color);
|
|
color = mix(background_color, blended_border,
|
|
saturate(antialias_threshold - inner_sdf));
|
|
}
|
|
|
|
return blend_color(color, saturate(antialias_threshold - outer_sdf));
|
|
}
|
|
|
|
// Returns the dash velocity of a corner given the dash velocity of the two
|
|
// sides, by returning the slower velocity (larger dashes).
|
|
//
|
|
// Since 0 is used for dash velocity when the border width is 0 (instead of
|
|
// +inf), this returns the other dash velocity in that case.
|
|
//
|
|
// An alternative to this might be to appropriately interpolate the dash
|
|
// velocity around the corner, but that seems overcomplicated.
|
|
fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
|
|
if (dv1 == 0.0) {
|
|
return dv2;
|
|
} else if (dv2 == 0.0) {
|
|
return dv1;
|
|
} else {
|
|
return min(dv1, dv2);
|
|
}
|
|
}
|
|
|
|
// Returns alpha used to render antialiased dashes.
|
|
// `t` is within the dash when `fmod(t, period) < length`.
|
|
fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
|
|
let half_period = period / 2;
|
|
let half_length = length / 2;
|
|
// Value in [-half_period, half_period].
|
|
// The dash is in [-half_length, half_length].
|
|
let centered = fmod(t + half_period - half_length, period) - half_period;
|
|
// Signed distance for the dash, negative values are inside the dash.
|
|
let signed_distance = abs(centered) - half_length;
|
|
// Antialiased alpha based on the signed distance.
|
|
return saturate(antialias_threshold - signed_distance / dash_velocity);
|
|
}
|
|
|
|
// This approximates distance to the nearest point to a quarter ellipse in a way
|
|
// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
|
|
// The components of `point` are expected to be positive.
|
|
//
|
|
// Negative on the outside and positive on the inside.
|
|
fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
|
|
// Scale the space to treat the ellipse like a unit circle.
|
|
let circle_vec = point / radii;
|
|
let unit_circle_sdf = length(circle_vec) - 1.0;
|
|
// Approximate up-scaling of the length by using the average of the radii.
|
|
//
|
|
// TODO: A better solution would be to use the gradient of the implicit
|
|
// function for an ellipse to approximate a scaling factor.
|
|
return unit_circle_sdf * (radii.x + radii.y) * -0.5;
|
|
}
|
|
|
|
// Modulus that has the same sign as `a`.
|
|
fn fmod(a: f32, b: f32) -> f32 {
|
|
return a - b * trunc(a / b);
|
|
}
|
|
|
|
// --- shadows --- //
|
|
|
|
struct Shadow {
|
|
order: u32,
|
|
blur_radius: f32,
|
|
bounds: Bounds,
|
|
corner_radii: Corners,
|
|
content_mask: Bounds,
|
|
color: Hsla,
|
|
}
|
|
var<storage, read> b_shadows: array<Shadow>;
|
|
|
|
struct ShadowVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) @interpolate(flat) color: vec4<f32>,
|
|
@location(1) @interpolate(flat) shadow_id: u32,
|
|
//TODO: use `clip_distance` once Naga supports it
|
|
@location(3) clip_distances: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
var shadow = b_shadows[instance_id];
|
|
|
|
let margin = 3.0 * shadow.blur_radius;
|
|
// Set the bounds of the shadow and adjust its size based on the shadow's
|
|
// spread radius to achieve the spreading effect
|
|
shadow.bounds.origin -= vec2<f32>(margin);
|
|
shadow.bounds.size += 2.0 * vec2<f32>(margin);
|
|
|
|
var out = ShadowVarying();
|
|
out.position = to_device_position(unit_vertex, shadow.bounds);
|
|
out.color = hsla_to_rgba(shadow.color);
|
|
out.shadow_id = instance_id;
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
|
|
// Alpha clip first, since we don't have `clip_distance`.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let shadow = b_shadows[input.shadow_id];
|
|
let half_size = shadow.bounds.size / 2.0;
|
|
let center = shadow.bounds.origin + half_size;
|
|
let center_to_point = input.position.xy - center;
|
|
|
|
let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
|
|
|
|
// The signal is only non-zero in a limited range, so don't waste samples
|
|
let low = center_to_point.y - half_size.y;
|
|
let high = center_to_point.y + half_size.y;
|
|
let start = clamp(-3.0 * shadow.blur_radius, low, high);
|
|
let end = clamp(3.0 * shadow.blur_radius, low, high);
|
|
|
|
// Accumulate samples (we can get away with surprisingly few samples)
|
|
let step = (end - start) / 4.0;
|
|
var y = start + step * 0.5;
|
|
var alpha = 0.0;
|
|
for (var i = 0; i < 4; i += 1) {
|
|
let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
|
|
shadow.blur_radius, corner_radius, half_size);
|
|
alpha += blur * gaussian(y, shadow.blur_radius) * step;
|
|
y += step;
|
|
}
|
|
|
|
return blend_color(input.color, alpha);
|
|
}
|
|
|
|
// --- paths --- //
|
|
|
|
struct PathVertex {
|
|
xy_position: vec2<f32>,
|
|
content_mask: Bounds,
|
|
}
|
|
|
|
struct PathSprite {
|
|
bounds: Bounds,
|
|
color: Background,
|
|
}
|
|
var<storage, read> b_path_vertices: array<PathVertex>;
|
|
var<storage, read> b_path_sprites: array<PathSprite>;
|
|
|
|
struct PathVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) clip_distances: vec4<f32>,
|
|
@location(1) @interpolate(flat) instance_id: u32,
|
|
@location(2) @interpolate(flat) color_solid: vec4<f32>,
|
|
@location(3) @interpolate(flat) color0: vec4<f32>,
|
|
@location(4) @interpolate(flat) color1: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
|
|
let v = b_path_vertices[vertex_id];
|
|
let sprite = b_path_sprites[instance_id];
|
|
|
|
var out = PathVarying();
|
|
out.position = to_device_position_impl(v.xy_position);
|
|
out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
|
|
out.instance_id = instance_id;
|
|
|
|
let gradient = prepare_gradient_color(
|
|
sprite.color.tag,
|
|
sprite.color.color_space,
|
|
sprite.color.solid,
|
|
sprite.color.colors
|
|
);
|
|
out.color_solid = gradient.solid;
|
|
out.color0 = gradient.color0;
|
|
out.color1 = gradient.color1;
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
|
|
if any(input.clip_distances < vec4<f32>(0.0)) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let sprite = b_path_sprites[input.instance_id];
|
|
let background = sprite.color;
|
|
let color = gradient_color(background, input.position.xy, sprite.bounds,
|
|
input.color_solid, input.color0, input.color1);
|
|
return blend_color(color, 1.0);
|
|
}
|
|
|
|
// --- underlines --- //
|
|
|
|
struct Underline {
|
|
order: u32,
|
|
pad: u32,
|
|
bounds: Bounds,
|
|
content_mask: Bounds,
|
|
color: Hsla,
|
|
thickness: f32,
|
|
wavy: u32,
|
|
}
|
|
var<storage, read> b_underlines: array<Underline>;
|
|
|
|
struct UnderlineVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) @interpolate(flat) color: vec4<f32>,
|
|
@location(1) @interpolate(flat) underline_id: u32,
|
|
//TODO: use `clip_distance` once Naga supports it
|
|
@location(3) clip_distances: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
let underline = b_underlines[instance_id];
|
|
|
|
var out = UnderlineVarying();
|
|
out.position = to_device_position(unit_vertex, underline.bounds);
|
|
out.color = hsla_to_rgba(underline.color);
|
|
out.underline_id = instance_id;
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
|
|
// Alpha clip first, since we don't have `clip_distance`.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let underline = b_underlines[input.underline_id];
|
|
if ((underline.wavy & 0xFFu) == 0u)
|
|
{
|
|
return blend_color(input.color, input.color.a);
|
|
}
|
|
|
|
let half_thickness = underline.thickness * 0.5;
|
|
let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
|
|
let frequency = M_PI_F * 3.0 * underline.thickness / 3.0;
|
|
let amplitude = 1.0 / (4.0 * underline.thickness);
|
|
let sine = sin(st.x * frequency) * amplitude;
|
|
let dSine = cos(st.x * frequency) * amplitude * frequency;
|
|
let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
|
|
let distance_in_pixels = distance * underline.bounds.size.y;
|
|
let distance_from_top_border = distance_in_pixels - half_thickness;
|
|
let distance_from_bottom_border = distance_in_pixels + half_thickness;
|
|
let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
|
|
return blend_color(input.color, alpha * input.color.a);
|
|
}
|
|
|
|
// --- monochrome sprites --- //
|
|
|
|
struct MonochromeSprite {
|
|
order: u32,
|
|
pad: u32,
|
|
bounds: Bounds,
|
|
content_mask: Bounds,
|
|
color: Hsla,
|
|
tile: AtlasTile,
|
|
transformation: TransformationMatrix,
|
|
}
|
|
var<storage, read> b_mono_sprites: array<MonochromeSprite>;
|
|
|
|
struct MonoSpriteVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) tile_position: vec2<f32>,
|
|
@location(1) @interpolate(flat) color: vec4<f32>,
|
|
@location(3) clip_distances: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
let sprite = b_mono_sprites[instance_id];
|
|
|
|
var out = MonoSpriteVarying();
|
|
out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
|
|
|
|
out.tile_position = to_tile_position(unit_vertex, sprite.tile);
|
|
out.color = hsla_to_rgba(sprite.color);
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
|
|
let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
|
|
// Alpha clip after using the derivatives.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
return blend_color(input.color, sample);
|
|
}
|
|
|
|
// --- polychrome sprites --- //
|
|
|
|
struct PolychromeSprite {
|
|
order: u32,
|
|
pad: u32,
|
|
grayscale: u32,
|
|
opacity: f32,
|
|
bounds: Bounds,
|
|
content_mask: Bounds,
|
|
corner_radii: Corners,
|
|
tile: AtlasTile,
|
|
}
|
|
var<storage, read> b_poly_sprites: array<PolychromeSprite>;
|
|
|
|
struct PolySpriteVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) tile_position: vec2<f32>,
|
|
@location(1) @interpolate(flat) sprite_id: u32,
|
|
@location(3) clip_distances: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
let sprite = b_poly_sprites[instance_id];
|
|
|
|
var out = PolySpriteVarying();
|
|
out.position = to_device_position(unit_vertex, sprite.bounds);
|
|
out.tile_position = to_tile_position(unit_vertex, sprite.tile);
|
|
out.sprite_id = instance_id;
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
|
|
let sample = textureSample(t_sprite, s_sprite, input.tile_position);
|
|
// Alpha clip after using the derivatives.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let sprite = b_poly_sprites[input.sprite_id];
|
|
let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
|
|
|
|
var color = sample;
|
|
if ((sprite.grayscale & 0xFFu) != 0u) {
|
|
let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
|
|
color = vec4<f32>(vec3<f32>(grayscale), sample.a);
|
|
}
|
|
return blend_color(color, sprite.opacity * saturate(0.5 - distance));
|
|
}
|
|
|
|
// --- surfaces --- //
|
|
|
|
struct SurfaceParams {
|
|
bounds: Bounds,
|
|
content_mask: Bounds,
|
|
}
|
|
|
|
var<uniform> surface_locals: SurfaceParams;
|
|
var t_y: texture_2d<f32>;
|
|
var t_cb_cr: texture_2d<f32>;
|
|
var s_surface: sampler;
|
|
|
|
const ycbcr_to_RGB = mat4x4<f32>(
|
|
vec4<f32>( 1.0000f, 1.0000f, 1.0000f, 0.0),
|
|
vec4<f32>( 0.0000f, -0.3441f, 1.7720f, 0.0),
|
|
vec4<f32>( 1.4020f, -0.7141f, 0.0000f, 0.0),
|
|
vec4<f32>(-0.7010f, 0.5291f, -0.8860f, 1.0),
|
|
);
|
|
|
|
struct SurfaceVarying {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(0) texture_position: vec2<f32>,
|
|
@location(3) clip_distances: vec4<f32>,
|
|
}
|
|
|
|
@vertex
|
|
fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
|
|
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
|
|
|
|
var out = SurfaceVarying();
|
|
out.position = to_device_position(unit_vertex, surface_locals.bounds);
|
|
out.texture_position = unit_vertex;
|
|
out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
|
|
// Alpha clip after using the derivatives.
|
|
if (any(input.clip_distances < vec4<f32>(0.0))) {
|
|
return vec4<f32>(0.0);
|
|
}
|
|
|
|
let y_cb_cr = vec4<f32>(
|
|
textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
|
|
textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
|
|
1.0);
|
|
|
|
return ycbcr_to_RGB * y_cb_cr;
|
|
}
|