ZIm/crates/gpui2/src/window.rs
Nathan Sobo db1cf8f6e1 Rename build_view to new_view and build_model to new_model
The word "new" is shorter and blends in with `new` constructors that are common
in Rust. Been meaning to do this for a while.
2024-01-01 17:42:01 -07:00

3154 lines
103 KiB
Rust

use crate::{
px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, Arena, ArenaBox, ArenaRef,
AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle,
DevicePixels, DispatchActionListener, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect,
Entity, EntityId, EventEmitter, FileDropEvent, Flatten, FontId, GlobalElementId, GlyphId, Hsla,
ImageData, InputEvent, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeystrokeEvent, LayoutId,
Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseMoveEvent, MouseUpEvent,
Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInputHandler, PlatformWindow, Point,
PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams,
RenderSvgParams, ScaledPixels, Scene, SceneBuilder, Shadow, SharedString, Size, Style,
SubscriberSet, Subscription, Surface, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View,
VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
};
use anyhow::{anyhow, Context as _, Result};
use collections::FxHashMap;
use derive_more::{Deref, DerefMut};
use futures::{
channel::{mpsc, oneshot},
StreamExt,
};
use media::core_video::CVImageBuffer;
use parking_lot::RwLock;
use slotmap::SlotMap;
use smallvec::SmallVec;
use std::{
any::{Any, TypeId},
borrow::{Borrow, BorrowMut, Cow},
cell::RefCell,
fmt::Debug,
future::Future,
hash::{Hash, Hasher},
marker::PhantomData,
mem,
rc::Rc,
sync::{
atomic::{AtomicUsize, Ordering::SeqCst},
Arc,
},
};
use util::{post_inc, ResultExt};
const ACTIVE_DRAG_Z_INDEX: u8 = 1;
/// A global stacking order, which is created by stacking successive z-index values.
/// Each z-index will always be interpreted in the context of its parent z-index.
#[derive(Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
pub struct StackingOrder {
#[deref]
#[deref_mut]
context_stack: SmallVec<[u8; 64]>,
id: u32,
}
impl std::fmt::Debug for StackingOrder {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut stacks = self.context_stack.iter().peekable();
write!(f, "[({}): ", self.id)?;
while let Some(z_index) = stacks.next() {
write!(f, "{z_index}")?;
if stacks.peek().is_some() {
write!(f, "->")?;
}
}
write!(f, "]")?;
Ok(())
}
}
/// Represents the two different phases when dispatching events.
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
pub enum DispatchPhase {
/// After the capture phase comes the bubble phase, in which mouse event listeners are
/// invoked front to back and keyboard event listeners are invoked from the focused element
/// to the root of the element tree. This is the phase you'll most commonly want to use when
/// registering event listeners.
#[default]
Bubble,
/// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
/// listeners are invoked from the root of the tree downward toward the focused element. This phase
/// is used for special purposes such as clearing the "pressed" state for click events. If
/// you stop event propagation during this phase, you need to know what you're doing. Handlers
/// outside of the immediate region may rely on detecting non-local events during this phase.
Capture,
}
impl DispatchPhase {
pub fn bubble(self) -> bool {
self == DispatchPhase::Bubble
}
pub fn capture(self) -> bool {
self == DispatchPhase::Capture
}
}
type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
type AnyMouseListener = ArenaBox<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
struct FocusEvent {
previous_focus_path: SmallVec<[FocusId; 8]>,
current_focus_path: SmallVec<[FocusId; 8]>,
}
slotmap::new_key_type! { pub struct FocusId; }
thread_local! {
pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(4 * 1024 * 1024));
}
impl FocusId {
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
cx.window.focus == Some(*self)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
cx.focused()
.map_or(false, |focused| self.contains(focused.id, cx))
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
let focused = cx.focused();
focused.map_or(false, |focused| focused.id.contains(*self, cx))
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
cx.window
.rendered_frame
.dispatch_tree
.focus_contains(*self, other)
}
}
/// A handle which can be used to track and manipulate the focused element in a window.
pub struct FocusHandle {
pub(crate) id: FocusId,
handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
}
impl std::fmt::Debug for FocusHandle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("FocusHandle({:?})", self.id))
}
}
impl FocusHandle {
pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
let id = handles.write().insert(AtomicUsize::new(1));
Self {
id,
handles: handles.clone(),
}
}
pub(crate) fn for_id(
id: FocusId,
handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
) -> Option<Self> {
let lock = handles.read();
let ref_count = lock.get(id)?;
if ref_count.load(SeqCst) == 0 {
None
} else {
ref_count.fetch_add(1, SeqCst);
Some(Self {
id,
handles: handles.clone(),
})
}
}
/// Moves the focus to the element associated with this handle.
pub fn focus(&self, cx: &mut WindowContext) {
cx.focus(self)
}
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
self.id.is_focused(cx)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
self.id.contains_focused(cx)
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
self.id.within_focused(cx)
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
self.id.contains(other.id, cx)
}
}
impl Clone for FocusHandle {
fn clone(&self) -> Self {
Self::for_id(self.id, &self.handles).unwrap()
}
}
impl PartialEq for FocusHandle {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for FocusHandle {}
impl Drop for FocusHandle {
fn drop(&mut self) {
self.handles
.read()
.get(self.id)
.unwrap()
.fetch_sub(1, SeqCst);
}
}
/// FocusableView allows users of your view to easily
/// focus it (using cx.focus_view(view))
pub trait FocusableView: 'static + Render {
fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
}
/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
/// where the lifecycle of the view is handled by another view.
pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
pub struct DismissEvent;
// Holds the state for a specific window.
pub struct Window {
pub(crate) handle: AnyWindowHandle,
pub(crate) removed: bool,
pub(crate) platform_window: Box<dyn PlatformWindow>,
display_id: DisplayId,
sprite_atlas: Arc<dyn PlatformAtlas>,
rem_size: Pixels,
viewport_size: Size<Pixels>,
layout_engine: Option<TaffyLayoutEngine>,
pub(crate) root_view: Option<AnyView>,
pub(crate) element_id_stack: GlobalElementId,
pub(crate) rendered_frame: Frame,
pub(crate) next_frame: Frame,
frame_arena: Arena,
pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
blur_listeners: SubscriberSet<(), AnyObserver>,
default_prevented: bool,
mouse_position: Point<Pixels>,
modifiers: Modifiers,
requested_cursor_style: Option<CursorStyle>,
scale_factor: f32,
bounds: WindowBounds,
bounds_observers: SubscriberSet<(), AnyObserver>,
active: bool,
pub(crate) dirty: bool,
pub(crate) drawing: bool,
activation_observers: SubscriberSet<(), AnyObserver>,
pub(crate) focus: Option<FocusId>,
focus_enabled: bool,
#[cfg(any(test, feature = "test-support"))]
pub(crate) focus_invalidated: bool,
}
pub(crate) struct ElementStateBox {
inner: Box<dyn Any>,
#[cfg(debug_assertions)]
type_name: &'static str,
}
pub(crate) struct Frame {
focus: Option<FocusId>,
pub(crate) element_states: FxHashMap<GlobalElementId, ElementStateBox>,
mouse_listeners: FxHashMap<TypeId, Vec<(StackingOrder, AnyMouseListener)>>,
pub(crate) dispatch_tree: DispatchTree,
pub(crate) scene_builder: SceneBuilder,
pub(crate) depth_map: Vec<(StackingOrder, Bounds<Pixels>)>,
pub(crate) z_index_stack: StackingOrder,
pub(crate) next_stacking_order_id: u32,
content_mask_stack: Vec<ContentMask<Pixels>>,
element_offset_stack: Vec<Point<Pixels>>,
}
impl Frame {
fn new(dispatch_tree: DispatchTree) -> Self {
Frame {
focus: None,
element_states: FxHashMap::default(),
mouse_listeners: FxHashMap::default(),
dispatch_tree,
scene_builder: SceneBuilder::default(),
z_index_stack: StackingOrder::default(),
next_stacking_order_id: 0,
depth_map: Default::default(),
content_mask_stack: Vec::new(),
element_offset_stack: Vec::new(),
}
}
fn clear(&mut self) {
self.element_states.clear();
self.mouse_listeners.values_mut().for_each(Vec::clear);
self.dispatch_tree.clear();
self.depth_map.clear();
self.next_stacking_order_id = 0;
}
fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
self.focus
.map(|focus_id| self.dispatch_tree.focus_path(focus_id))
.unwrap_or_default()
}
}
impl Window {
pub(crate) fn new(
handle: AnyWindowHandle,
options: WindowOptions,
cx: &mut AppContext,
) -> Self {
let platform_window = cx.platform.open_window(
handle,
options,
Box::new({
let mut cx = cx.to_async();
move || handle.update(&mut cx, |_, cx| cx.draw())
}),
);
let display_id = platform_window.display().id();
let sprite_atlas = platform_window.sprite_atlas();
let mouse_position = platform_window.mouse_position();
let modifiers = platform_window.modifiers();
let content_size = platform_window.content_size();
let scale_factor = platform_window.scale_factor();
let bounds = platform_window.bounds();
platform_window.on_resize(Box::new({
let mut cx = cx.to_async();
move |_, _| {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_moved(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_active_status_change(Box::new({
let mut cx = cx.to_async();
move |active| {
handle
.update(&mut cx, |_, cx| {
cx.window.active = active;
cx.window
.activation_observers
.clone()
.retain(&(), |callback| callback(cx));
})
.log_err();
}
}));
platform_window.on_input({
let mut cx = cx.to_async();
Box::new(move |event| {
handle
.update(&mut cx, |_, cx| cx.dispatch_event(event))
.log_err()
.unwrap_or(false)
})
});
Window {
handle,
removed: false,
platform_window,
display_id,
sprite_atlas,
rem_size: px(16.),
viewport_size: content_size,
layout_engine: Some(TaffyLayoutEngine::new()),
root_view: None,
element_id_stack: GlobalElementId::default(),
rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
frame_arena: Arena::new(1 * 1024 * 1024),
focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
focus_listeners: SubscriberSet::new(),
blur_listeners: SubscriberSet::new(),
default_prevented: true,
mouse_position,
modifiers,
requested_cursor_style: None,
scale_factor,
bounds,
bounds_observers: SubscriberSet::new(),
active: false,
dirty: false,
drawing: false,
activation_observers: SubscriberSet::new(),
focus: None,
focus_enabled: true,
#[cfg(any(test, feature = "test-support"))]
focus_invalidated: false,
}
}
}
/// Indicates which region of the window is visible. Content falling outside of this mask will not be
/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
/// to leave room to support more complex shapes in the future.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[repr(C)]
pub struct ContentMask<P: Clone + Default + Debug> {
pub bounds: Bounds<P>,
}
impl ContentMask<Pixels> {
/// Scale the content mask's pixel units by the given scaling factor.
pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
ContentMask {
bounds: self.bounds.scale(factor),
}
}
/// Intersect the content mask with the given content mask.
pub fn intersect(&self, other: &Self) -> Self {
let bounds = self.bounds.intersect(&other.bounds);
ContentMask { bounds }
}
}
/// Provides access to application state in the context of a single window. Derefs
/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
/// an `AppContext` and call any `AppContext` methods.
pub struct WindowContext<'a> {
pub(crate) app: &'a mut AppContext,
pub(crate) window: &'a mut Window,
}
impl<'a> WindowContext<'a> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
Self { app, window }
}
/// Obtain a handle to the window that belongs to this context.
pub fn window_handle(&self) -> AnyWindowHandle {
self.window.handle
}
/// Mark the window as dirty, scheduling it to be redrawn on the next frame.
pub fn notify(&mut self) {
if !self.window.drawing {
self.window.dirty = true;
}
}
/// Close this window.
pub fn remove_window(&mut self) {
self.window.removed = true;
}
/// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
/// for elements rendered within this window.
pub fn focus_handle(&mut self) -> FocusHandle {
FocusHandle::new(&self.window.focus_handles)
}
/// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
pub fn focused(&self) -> Option<FocusHandle> {
self.window
.focus
.and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
}
/// Move focus to the element associated with the given `FocusHandle`.
pub fn focus(&mut self, handle: &FocusHandle) {
if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
return;
}
self.window.focus = Some(handle.id);
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
#[cfg(any(test, feature = "test-support"))]
{
self.window.focus_invalidated = true;
}
self.notify();
}
/// Remove focus from all elements within this context's window.
pub fn blur(&mut self) {
if !self.window.focus_enabled {
return;
}
self.window.focus = None;
self.notify();
}
pub fn disable_focus(&mut self) {
self.blur();
self.window.focus_enabled = false;
}
pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
let focus_handle = self.focused();
self.defer(move |cx| {
let node_id = focus_handle
.and_then(|handle| {
cx.window
.rendered_frame
.dispatch_tree
.focusable_node_id(handle.id)
})
.unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
cx.propagate_event = true;
cx.dispatch_action_on_node(node_id, action);
})
}
pub(crate) fn dispatch_keystroke_observers(
&mut self,
event: &dyn Any,
action: Option<Box<dyn Action>>,
) {
let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
return;
};
self.keystroke_observers
.clone()
.retain(&(), move |callback| {
(callback)(
&KeystrokeEvent {
keystroke: key_down_event.keystroke.clone(),
action: action.as_ref().map(|action| action.boxed_clone()),
},
self,
);
true
});
}
pub(crate) fn clear_pending_keystrokes(&mut self) {
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
self.window
.next_frame
.dispatch_tree
.clear_pending_keystrokes();
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
self.app.defer(move |cx| {
handle.update(cx, |_, cx| f(cx)).ok();
});
}
pub fn subscribe<Emitter, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
) -> Subscription
where
Emitter: EventEmitter<Evt>,
E: Entity<Emitter>,
Evt: 'static,
{
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.event_listeners.insert(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
let event = event.downcast_ref().expect("invalid event type");
on_event(handle, event, cx);
true
} else {
false
}
})
.unwrap_or(false)
}),
),
);
self.app.defer(move |_| activate());
subscription
}
/// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
/// await points in async code.
pub fn to_async(&self) -> AsyncWindowContext {
AsyncWindowContext::new(self.app.to_async(), self.window.handle)
}
/// Schedule the given closure to be run directly after the current frame is rendered.
pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
let display_id = self.window.display_id;
if !self.frame_consumers.contains_key(&display_id) {
let (tx, mut rx) = mpsc::unbounded::<()>();
self.platform.set_display_link_output_callback(
display_id,
Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
);
let consumer_task = self.app.spawn(|cx| async move {
while rx.next().await.is_some() {
cx.update(|cx| {
for callback in cx
.next_frame_callbacks
.get_mut(&display_id)
.unwrap()
.drain(..)
.collect::<SmallVec<[_; 32]>>()
{
callback(cx);
}
})
.ok();
// Flush effects, then stop the display link if no new next_frame_callbacks have been added.
cx.update(|cx| {
if cx.next_frame_callbacks.is_empty() {
cx.platform.stop_display_link(display_id);
}
})
.ok();
}
});
self.frame_consumers.insert(display_id, consumer_task);
}
if self.next_frame_callbacks.is_empty() {
self.platform.start_display_link(display_id);
}
self.next_frame_callbacks
.entry(display_id)
.or_default()
.push(Box::new(move |cx: &mut AppContext| {
cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
}));
}
/// Spawn the future returned by the given closure on the application thread pool.
/// The closure is provided a handle to the current window and an `AsyncWindowContext` for
/// use within your future.
pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
self.app
.spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
}
/// Update the global of the given type. The given closure is given simultaneous mutable
/// access both to the global and the context.
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: 'static,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
#[must_use]
/// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
/// layout is being requested, along with the layout ids of any children. This method is called during
/// calls to the `Element::layout` trait method and enables any element to participate in layout.
pub fn request_layout(
&mut self,
style: &Style,
children: impl IntoIterator<Item = LayoutId>,
) -> LayoutId {
self.app.layout_id_buffer.clear();
self.app.layout_id_buffer.extend(children.into_iter());
let rem_size = self.rem_size();
self.window.layout_engine.as_mut().unwrap().request_layout(
style,
rem_size,
&self.app.layout_id_buffer,
)
}
/// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
/// this variant takes a function that is invoked during layout so you can use arbitrary logic to
/// determine the element's size. One place this is used internally is when measuring text.
///
/// The given closure is invoked at layout time with the known dimensions and available space and
/// returns a `Size`.
pub fn request_measured_layout<
F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
+ 'static,
>(
&mut self,
style: Style,
measure: F,
) -> LayoutId {
let rem_size = self.rem_size();
self.window
.layout_engine
.as_mut()
.unwrap()
.request_measured_layout(style, rem_size, measure)
}
pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
let mut layout_engine = self.window.layout_engine.take().unwrap();
layout_engine.compute_layout(layout_id, available_space, self);
self.window.layout_engine = Some(layout_engine);
}
/// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
/// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
/// in order to pass your element its `Bounds` automatically.
pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
let mut bounds = self
.window
.layout_engine
.as_mut()
.unwrap()
.layout_bounds(layout_id)
.map(Into::into);
bounds.origin += self.element_offset();
bounds
}
fn window_bounds_changed(&mut self) {
self.window.scale_factor = self.window.platform_window.scale_factor();
self.window.viewport_size = self.window.platform_window.content_size();
self.window.bounds = self.window.platform_window.bounds();
self.window.display_id = self.window.platform_window.display().id();
self.notify();
self.window
.bounds_observers
.clone()
.retain(&(), |callback| callback(self));
}
pub fn window_bounds(&self) -> WindowBounds {
self.window.bounds
}
pub fn viewport_size(&self) -> Size<Pixels> {
self.window.viewport_size
}
pub fn is_window_active(&self) -> bool {
self.window.active
}
pub fn zoom_window(&self) {
self.window.platform_window.zoom();
}
pub fn set_window_title(&mut self, title: &str) {
self.window.platform_window.set_title(title);
}
pub fn set_window_edited(&mut self, edited: bool) {
self.window.platform_window.set_edited(edited);
}
pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
self.platform
.displays()
.into_iter()
.find(|display| display.id() == self.window.display_id)
}
pub fn show_character_palette(&self) {
self.window.platform_window.show_character_palette();
}
/// The scale factor of the display associated with the window. For example, it could
/// return 2.0 for a "retina" display, indicating that each logical pixel should actually
/// be rendered as two pixels on screen.
pub fn scale_factor(&self) -> f32 {
self.window.scale_factor
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn rem_size(&self) -> Pixels {
self.window.rem_size
}
/// Sets the size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
self.window.rem_size = rem_size.into();
}
/// The line height associated with the current text style.
pub fn line_height(&self) -> Pixels {
let rem_size = self.rem_size();
let text_style = self.text_style();
text_style
.line_height
.to_pixels(text_style.font_size.into(), rem_size)
}
/// Call to prevent the default action of an event. Currently only used to prevent
/// parent elements from becoming focused on mouse down.
pub fn prevent_default(&mut self) {
self.window.default_prevented = true;
}
/// Obtain whether default has been prevented for the event currently being dispatched.
pub fn default_prevented(&self) -> bool {
self.window.default_prevented
}
/// Register a mouse event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
pub fn on_mouse_event<Event: 'static>(
&mut self,
mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
) {
let order = self.window.next_frame.z_index_stack.clone();
let handler = self
.window
.frame_arena
.alloc(|| {
move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
handler(event.downcast_ref().unwrap(), phase, cx)
}
})
.map(|handler| handler as _);
self.window
.next_frame
.mouse_listeners
.entry(TypeId::of::<Event>())
.or_default()
.push((order, handler))
}
/// Register a key event listener on the window for the next frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using event handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_key_event<Event: 'static>(
&mut self,
listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
) {
let listener = self
.window
.frame_arena
.alloc(|| {
move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
if let Some(event) = event.downcast_ref::<Event>() {
listener(event, phase, cx)
}
}
})
.map(|handler| handler as _);
self.window
.next_frame
.dispatch_tree
.on_key_event(ArenaRef::from(listener));
}
/// Register an action listener on the window for the next frame. The type of action
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using action handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
) {
let listener = self
.window
.frame_arena
.alloc(|| listener)
.map(|handler| handler as _);
self.window
.next_frame
.dispatch_tree
.on_action(action_type, ArenaRef::from(listener));
}
pub fn is_action_available(&self, action: &dyn Action) -> bool {
let target = self
.focused()
.and_then(|focused_handle| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focused_handle.id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
self.window
.rendered_frame
.dispatch_tree
.is_action_available(action, target)
}
/// The position of the mouse relative to the window.
pub fn mouse_position(&self) -> Point<Pixels> {
self.window.mouse_position
}
/// The current state of the keyboard's modifiers
pub fn modifiers(&self) -> Modifiers {
self.window.modifiers
}
pub fn set_cursor_style(&mut self, style: CursorStyle) {
self.window.requested_cursor_style = Some(style)
}
/// Called during painting to track which z-index is on top at each pixel position
pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
let stacking_order = self.window.next_frame.z_index_stack.clone();
let depth_map = &mut self.window.next_frame.depth_map;
match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(&level)) {
Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)),
}
}
/// Returns true if there is no opaque layer containing the given point
/// on top of the given level. Layers whose level is an extension of the
/// level are not considered to be on top of the level.
pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() {
if level >= opaque_level {
break;
}
if bounds.contains(point) && !opaque_level.starts_with(level) {
return false;
}
}
true
}
pub fn was_top_layer_under_active_drag(
&self,
point: &Point<Pixels>,
level: &StackingOrder,
) -> bool {
for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() {
if level >= opaque_level {
break;
}
if opaque_level.starts_with(&[ACTIVE_DRAG_Z_INDEX]) {
continue;
}
if bounds.contains(point) && !opaque_level.starts_with(level) {
return false;
}
}
true
}
/// Called during painting to get the current stacking order.
pub fn stacking_order(&self) -> &StackingOrder {
&self.window.next_frame.z_index_stack
}
/// Paint one or more drop shadows into the scene for the next frame at the current z-index.
pub fn paint_shadows(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
shadows: &[BoxShadow],
) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let window = &mut *self.window;
for shadow in shadows {
let mut shadow_bounds = bounds;
shadow_bounds.origin += shadow.offset;
shadow_bounds.dilate(shadow.spread_radius);
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
Shadow {
order: 0,
bounds: shadow_bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
corner_radii: corner_radii.scale(scale_factor),
color: shadow.color,
blur_radius: shadow.blur_radius.scale(scale_factor),
},
);
}
}
/// Paint one or more quads into the scene for the next frame at the current stacking context.
/// Quads are colored rectangular regions with an optional background, border, and corner radius.
/// see [`fill`], [`outline`], and [`quad`] to construct this type.
pub fn paint_quad(&mut self, quad: PaintQuad) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
Quad {
order: 0,
bounds: quad.bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
background: quad.background,
border_color: quad.border_color,
corner_radii: quad.corner_radii.scale(scale_factor),
border_widths: quad.border_widths.scale(scale_factor),
},
);
}
/// Paint the given `Path` into the scene for the next frame at the current z-index.
pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
path.content_mask = content_mask;
path.color = color.into();
let window = &mut *self.window;
window
.next_frame
.scene_builder
.insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
}
/// Paint an underline into the scene for the next frame at the current z-index.
pub fn paint_underline(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &UnderlineStyle,
) {
let scale_factor = self.scale_factor();
let height = if style.wavy {
style.thickness * 3.
} else {
style.thickness
};
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
Underline {
order: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
thickness: style.thickness.scale(scale_factor),
color: style.color.unwrap_or_default(),
wavy: style.wavy,
},
);
}
/// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
/// The y component of the origin is the baseline of the glyph.
pub fn paint_glyph(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let subpixel_variant = Point {
x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
};
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
subpixel_variant,
scale_factor,
is_emoji: false,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
MonochromeSprite {
order: 0,
bounds,
content_mask,
color,
tile,
},
);
}
Ok(())
}
/// Paint an emoji glyph into the scene for the next frame at the current z-index.
/// The y component of the origin is the baseline of the glyph.
pub fn paint_emoji(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
// We don't render emojis with subpixel variants.
subpixel_variant: Default::default(),
scale_factor,
is_emoji: true,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
PolychromeSprite {
order: 0,
bounds,
corner_radii: Default::default(),
content_mask,
tile,
grayscale: false,
},
);
}
Ok(())
}
/// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
pub fn paint_svg(
&mut self,
bounds: Bounds<Pixels>,
path: SharedString,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
// Render the SVG at twice the size to get a higher quality result.
let params = RenderSvgParams {
path,
size: bounds
.size
.map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
};
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let bytes = self.svg_renderer.render(&params)?;
Ok((params.size, Cow::Owned(bytes)))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
MonochromeSprite {
order: 0,
bounds,
content_mask,
color,
tile,
},
);
Ok(())
}
/// Paint an image into the scene for the next frame at the current z-index.
pub fn paint_image(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
data: Arc<ImageData>,
grayscale: bool,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let params = RenderImageParams { image_id: data.id };
let tile = self
.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
Ok((data.size(), Cow::Borrowed(data.as_bytes())))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let corner_radii = corner_radii.scale(scale_factor);
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
PolychromeSprite {
order: 0,
bounds,
content_mask,
corner_radii,
tile,
grayscale,
},
);
Ok(())
}
/// Paint a surface into the scene for the next frame at the current z-index.
pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.next_frame.scene_builder.insert(
&window.next_frame.z_index_stack,
Surface {
order: 0,
bounds,
content_mask,
image_buffer,
},
);
}
/// Draw pixels to the display for this window based on the contents of its scene.
pub(crate) fn draw(&mut self) -> Scene {
self.window.dirty = false;
self.window.drawing = true;
#[cfg(any(test, feature = "test-support"))]
{
self.window.focus_invalidated = false;
}
self.text_system().start_frame();
self.window.platform_window.clear_input_handler();
self.window.layout_engine.as_mut().unwrap().clear();
self.window.next_frame.clear();
self.window.frame_arena.clear();
let root_view = self.window.root_view.take().unwrap();
self.with_z_index(0, |cx| {
cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
for (action_type, action_listeners) in &cx.app.global_action_listeners {
for action_listener in action_listeners.iter().cloned() {
let listener = cx
.window
.frame_arena
.alloc(|| {
move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
action_listener(action, phase, cx)
}
})
.map(|listener| listener as _);
cx.window
.next_frame
.dispatch_tree
.on_action(*action_type, ArenaRef::from(listener))
}
}
let available_space = cx.window.viewport_size.map(Into::into);
root_view.draw(Point::default(), available_space, cx);
})
});
if let Some(active_drag) = self.app.active_drag.take() {
self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
let offset = cx.mouse_position() - active_drag.cursor_offset;
let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
active_drag.view.draw(offset, available_space, cx);
});
self.active_drag = Some(active_drag);
} else if let Some(active_tooltip) = self.app.active_tooltip.take() {
self.with_z_index(1, |cx| {
let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
active_tooltip
.view
.draw(active_tooltip.cursor_offset, available_space, cx);
});
}
self.window
.next_frame
.dispatch_tree
.preserve_pending_keystrokes(
&mut self.window.rendered_frame.dispatch_tree,
self.window.focus,
);
self.window.next_frame.focus = self.window.focus;
self.window.root_view = Some(root_view);
let previous_focus_path = self.window.rendered_frame.focus_path();
mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
let current_focus_path = self.window.rendered_frame.focus_path();
if previous_focus_path != current_focus_path {
if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
self.window
.blur_listeners
.clone()
.retain(&(), |listener| listener(self));
}
let event = FocusEvent {
previous_focus_path,
current_focus_path,
};
self.window
.focus_listeners
.clone()
.retain(&(), |listener| listener(&event, self));
}
let scene = self.window.rendered_frame.scene_builder.build();
// Set the cursor only if we're the active window.
let cursor_style = self
.window
.requested_cursor_style
.take()
.unwrap_or(CursorStyle::Arrow);
if self.is_window_active() {
self.platform.set_cursor_style(cursor_style);
}
self.window.drawing = false;
ELEMENT_ARENA.with_borrow_mut(|element_arena| element_arena.clear());
scene
}
/// Dispatch a mouse or keyboard event on the window.
pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
// Handlers may set this to false by calling `stop_propagation`.
self.app.propagate_event = true;
// Handlers may set this to true by calling `prevent_default`.
self.window.default_prevented = false;
let event = match event {
// Track the mouse position with our own state, since accessing the platform
// API for the mouse position can only occur on the main thread.
InputEvent::MouseMove(mouse_move) => {
self.window.mouse_position = mouse_move.position;
self.window.modifiers = mouse_move.modifiers;
InputEvent::MouseMove(mouse_move)
}
InputEvent::MouseDown(mouse_down) => {
self.window.mouse_position = mouse_down.position;
self.window.modifiers = mouse_down.modifiers;
InputEvent::MouseDown(mouse_down)
}
InputEvent::MouseUp(mouse_up) => {
self.window.mouse_position = mouse_up.position;
self.window.modifiers = mouse_up.modifiers;
InputEvent::MouseUp(mouse_up)
}
InputEvent::MouseExited(mouse_exited) => {
// todo!("Should we record that the mouse is outside of the window somehow? Or are these global pixels?")
self.window.modifiers = mouse_exited.modifiers;
InputEvent::MouseExited(mouse_exited)
}
InputEvent::ModifiersChanged(modifiers_changed) => {
self.window.modifiers = modifiers_changed.modifiers;
InputEvent::ModifiersChanged(modifiers_changed)
}
InputEvent::ScrollWheel(scroll_wheel) => {
self.window.mouse_position = scroll_wheel.position;
self.window.modifiers = scroll_wheel.modifiers;
InputEvent::ScrollWheel(scroll_wheel)
}
// Translate dragging and dropping of external files from the operating system
// to internal drag and drop events.
InputEvent::FileDrop(file_drop) => match file_drop {
FileDropEvent::Entered { position, files } => {
self.window.mouse_position = position;
if self.active_drag.is_none() {
self.active_drag = Some(AnyDrag {
value: Box::new(files.clone()),
view: self.new_view(|_| files).into(),
cursor_offset: position,
});
}
InputEvent::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Pending { position } => {
self.window.mouse_position = position;
InputEvent::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Submit { position } => {
self.activate(true);
self.window.mouse_position = position;
InputEvent::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position,
modifiers: Modifiers::default(),
click_count: 1,
})
}
FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position: Point::default(),
modifiers: Modifiers::default(),
click_count: 1,
}),
},
InputEvent::KeyDown(_) | InputEvent::KeyUp(_) => event,
};
if let Some(any_mouse_event) = event.mouse_event() {
self.dispatch_mouse_event(any_mouse_event);
} else if let Some(any_key_event) = event.keyboard_event() {
self.dispatch_key_event(any_key_event);
}
!self.app.propagate_event
}
fn dispatch_mouse_event(&mut self, event: &dyn Any) {
if let Some(mut handlers) = self
.window
.rendered_frame
.mouse_listeners
.remove(&event.type_id())
{
// Because handlers may add other handlers, we sort every time.
handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
// Capture phase, events bubble from back to front. Handlers for this phase are used for
// special purposes, such as detecting events outside of a given Bounds.
for (_, handler) in &mut handlers {
handler(event, DispatchPhase::Capture, self);
if !self.app.propagate_event {
break;
}
}
// Bubble phase, where most normal handlers do their work.
if self.app.propagate_event {
for (_, handler) in handlers.iter_mut().rev() {
handler(event, DispatchPhase::Bubble, self);
if !self.app.propagate_event {
break;
}
}
}
self.window
.rendered_frame
.mouse_listeners
.insert(event.type_id(), handlers);
}
if self.app.propagate_event && self.has_active_drag() {
if event.is::<MouseMoveEvent>() {
// If this was a mouse move event, redraw the window so that the
// active drag can follow the mouse cursor.
self.notify();
} else if event.is::<MouseUpEvent>() {
// If this was a mouse up event, cancel the active drag and redraw
// the window.
self.active_drag = None;
self.notify();
}
}
}
fn dispatch_key_event(&mut self, event: &dyn Any) {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
let mut actions: Vec<Box<dyn Action>> = Vec::new();
// Capture phase
let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
self.propagate_event = true;
for node_id in &dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
if let Some(context) = node.context.clone() {
context_stack.push(context);
}
for key_listener in node.key_listeners.clone() {
key_listener(event, DispatchPhase::Capture, self);
if !self.propagate_event {
return;
}
}
}
// Bubble phase
for node_id in dispatch_path.iter().rev() {
// Handle low level key events
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for key_listener in node.key_listeners.clone() {
key_listener(event, DispatchPhase::Bubble, self);
if !self.propagate_event {
return;
}
}
// Match keystrokes
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
if node.context.is_some() {
if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
let mut new_actions = self
.window
.rendered_frame
.dispatch_tree
.dispatch_key(&key_down_event.keystroke, &context_stack);
actions.append(&mut new_actions);
}
context_stack.pop();
}
}
if !actions.is_empty() {
self.clear_pending_keystrokes();
}
for action in actions {
self.dispatch_action_on_node(node_id, action.boxed_clone());
if !self.propagate_event {
self.dispatch_keystroke_observers(event, Some(action));
return;
}
}
self.dispatch_keystroke_observers(event, None);
}
pub fn has_pending_keystrokes(&self) -> bool {
self.window
.rendered_frame
.dispatch_tree
.has_pending_keystrokes()
}
fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
// Capture phase
for node_id in &dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
listener(any_action, DispatchPhase::Capture, self);
if !self.propagate_event {
return;
}
}
}
}
// Bubble phase
for node_id in dispatch_path.iter().rev() {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
self.propagate_event = false; // Actions stop propagation by default during the bubble phase
listener(any_action, DispatchPhase::Bubble, self);
if !self.propagate_event {
return;
}
}
}
}
}
/// Register the given handler to be invoked whenever the global of the given type
/// is updated.
pub fn observe_global<G: 'static>(
&mut self,
f: impl Fn(&mut WindowContext<'_>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
);
self.app.defer(move |_| activate());
subscription
}
pub fn activate_window(&self) {
self.window.platform_window.activate();
}
pub fn minimize_window(&self) {
self.window.platform_window.minimize();
}
pub fn toggle_full_screen(&self) {
self.window.platform_window.toggle_full_screen();
}
pub fn prompt(
&self,
level: PromptLevel,
msg: &str,
answers: &[&str],
) -> oneshot::Receiver<usize> {
self.window.platform_window.prompt(level, msg, answers)
}
pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
self.window
.rendered_frame
.dispatch_tree
.available_actions(node_id)
}
pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
self.window
.rendered_frame
.dispatch_tree
.bindings_for_action(
action,
&self.window.rendered_frame.dispatch_tree.context_stack,
)
}
pub fn bindings_for_action_in(
&self,
action: &dyn Action,
focus_handle: &FocusHandle,
) -> Vec<KeyBinding> {
let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
return vec![];
};
let context_stack = dispatch_tree
.dispatch_path(node_id)
.into_iter()
.filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
.collect();
dispatch_tree.bindings_for_action(action, &context_stack)
}
pub fn listener_for<V: Render, E>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = view.downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
pub fn handler_for<V: Render>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
) -> impl Fn(&mut WindowContext) {
let view = view.downgrade();
move |cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, cx)).ok();
}
}
//========== ELEMENT RELATED FUNCTIONS ===========
pub fn with_key_dispatch<R>(
&mut self,
context: Option<KeyContext>,
focus_handle: Option<FocusHandle>,
f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
) -> R {
let window = &mut self.window;
window.next_frame.dispatch_tree.push_node(context.clone());
if let Some(focus_handle) = focus_handle.as_ref() {
window
.next_frame
.dispatch_tree
.make_focusable(focus_handle.id);
}
let result = f(focus_handle, self);
self.window.next_frame.dispatch_tree.pop_node();
result
}
/// Set an input handler, such as [ElementInputHandler], which interfaces with the
/// platform to receive textual input with proper integration with concerns such
/// as IME interactions.
pub fn handle_input(
&mut self,
focus_handle: &FocusHandle,
input_handler: impl PlatformInputHandler,
) {
if focus_handle.is_focused(self) {
self.window
.platform_window
.set_input_handler(Box::new(input_handler));
}
}
pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
let mut this = self.to_async();
self.window
.platform_window
.on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true)))
}
}
impl Context for WindowContext<'_> {
type Result<T> = T;
fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
where
T: 'static,
{
let slot = self.app.entities.reserve();
let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
self.entities.insert(slot, model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
let mut entity = self.entities.lease(model);
let result = update(
&mut *entity,
&mut ModelContext::new(&mut *self.app, model.downgrade()),
);
self.entities.end_lease(entity);
result
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
if window == self.window.handle {
let root_view = self.window.root_view.clone().unwrap();
Ok(update(root_view, self))
} else {
window.update(self.app, update)
}
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
let entity = self.entities.read(handle);
read(&*entity, &*self.app)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
if window.any_handle == self.window.handle {
let root_view = self
.window
.root_view
.clone()
.unwrap()
.downcast::<T>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(read(root_view, self))
} else {
self.app.read_window(window, read)
}
}
}
impl VisualContext for WindowContext<'_> {
fn new_view<V>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let slot = self.app.entities.reserve();
let view = View {
model: slot.clone(),
};
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let entity = build_view_state(&mut cx);
cx.entities.insert(slot, entity);
cx.new_view_observers
.clone()
.retain(&TypeId::of::<V>(), |observer| {
let any_view = AnyView::from(view.clone());
(observer)(any_view, self);
true
});
view
}
/// Update the given view. Prefer calling `View::update` instead, which calls this method.
fn update_view<T: 'static, R>(
&mut self,
view: &View<T>,
update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
) -> Self::Result<R> {
let mut lease = self.app.entities.lease(&view.model);
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let result = update(&mut *lease, &mut cx);
cx.app.entities.end_lease(lease);
result
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let view = self.new_view(build_view);
self.window.root_view = Some(view.clone().into());
self.notify();
view
}
fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
self.update_view(view, |view, cx| {
view.focus_handle(cx).clone().focus(cx);
})
}
fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
where
V: ManagedView,
{
self.update_view(view, |_, cx| cx.emit(DismissEvent))
}
}
impl<'a> std::ops::Deref for WindowContext<'a> {
type Target = AppContext;
fn deref(&self) -> &Self::Target {
&self.app
}
}
impl<'a> std::ops::DerefMut for WindowContext<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.app
}
}
impl<'a> Borrow<AppContext> for WindowContext<'a> {
fn borrow(&self) -> &AppContext {
&self.app
}
}
impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut self.app
}
}
pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
fn app_mut(&mut self) -> &mut AppContext {
self.borrow_mut()
}
fn app(&self) -> &AppContext {
self.borrow()
}
fn window(&self) -> &Window {
self.borrow()
}
fn window_mut(&mut self) -> &mut Window {
self.borrow_mut()
}
/// Pushes the given element id onto the global stack and invokes the given closure
/// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
/// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
/// used to associate state with identified elements across separate frames.
fn with_element_id<R>(
&mut self,
id: Option<impl Into<ElementId>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if let Some(id) = id.map(Into::into) {
let window = self.window_mut();
window.element_id_stack.push(id.into());
let result = f(self);
let window: &mut Window = self.borrow_mut();
window.element_id_stack.pop();
result
} else {
f(self)
}
}
/// Invoke the given function with the given content mask after intersecting it
/// with the current mask.
fn with_content_mask<R>(
&mut self,
mask: Option<ContentMask<Pixels>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if let Some(mask) = mask {
let mask = mask.intersect(&self.content_mask());
self.window_mut().next_frame.content_mask_stack.push(mask);
let result = f(self);
self.window_mut().next_frame.content_mask_stack.pop();
result
} else {
f(self)
}
}
/// Invoke the given function with the content mask reset to that
/// of the window.
fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
let mask = ContentMask {
bounds: Bounds {
origin: Point::default(),
size: self.window().viewport_size,
},
};
let new_stacking_order_id =
post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
let old_stacking_order = mem::take(&mut self.window_mut().next_frame.z_index_stack);
self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id;
self.window_mut().next_frame.content_mask_stack.push(mask);
let result = f(self);
self.window_mut().next_frame.content_mask_stack.pop();
self.window_mut().next_frame.z_index_stack = old_stacking_order;
result
}
/// Called during painting to invoke the given closure in a new stacking context. The given
/// z-index is interpreted relative to the previous call to `stack`.
fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
let new_stacking_order_id =
post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
let old_stacking_order_id = mem::replace(
&mut self.window_mut().next_frame.z_index_stack.id,
new_stacking_order_id,
);
self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id;
self.window_mut().next_frame.z_index_stack.push(z_index);
let result = f(self);
self.window_mut().next_frame.z_index_stack.id = old_stacking_order_id;
self.window_mut().next_frame.z_index_stack.pop();
result
}
/// Update the global element offset relative to the current offset. This is used to implement
/// scrolling.
fn with_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if offset.is_zero() {
return f(self);
};
let abs_offset = self.element_offset() + offset;
self.with_absolute_element_offset(abs_offset, f)
}
/// Update the global element offset based on the given offset. This is used to implement
/// drag handles and other manual painting of elements.
fn with_absolute_element_offset<R>(
&mut self,
offset: Point<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
self.window_mut()
.next_frame
.element_offset_stack
.push(offset);
let result = f(self);
self.window_mut().next_frame.element_offset_stack.pop();
result
}
/// Obtain the current element offset.
fn element_offset(&self) -> Point<Pixels> {
self.window()
.next_frame
.element_offset_stack
.last()
.copied()
.unwrap_or_default()
}
/// Update or initialize state for an element with the given id that lives across multiple
/// frames. If an element with this id existed in the rendered frame, its state will be passed
/// to the given closure. The state returned by the closure will be stored so it can be referenced
/// when drawing the next frame.
fn with_element_state<S, R>(
&mut self,
id: ElementId,
f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
) -> R
where
S: 'static,
{
self.with_element_id(Some(id), |cx| {
let global_id = cx.window().element_id_stack.clone();
if let Some(any) = cx
.window_mut()
.next_frame
.element_states
.remove(&global_id)
.or_else(|| {
cx.window_mut()
.rendered_frame
.element_states
.remove(&global_id)
})
{
let ElementStateBox {
inner,
#[cfg(debug_assertions)]
type_name
} = any;
// Using the extra inner option to avoid needing to reallocate a new box.
let mut state_box = inner
.downcast::<Option<S>>()
.map_err(|_| {
#[cfg(debug_assertions)]
{
anyhow!(
"invalid element state type for id, requested_type {:?}, actual type: {:?}",
std::any::type_name::<S>(),
type_name
)
}
#[cfg(not(debug_assertions))]
{
anyhow!(
"invalid element state type for id, requested_type {:?}",
std::any::type_name::<S>(),
)
}
})
.unwrap();
// Actual: Option<AnyElement> <- View
// Requested: () <- AnyElemet
let state = state_box
.take()
.expect("element state is already on the stack");
let (result, state) = f(Some(state), cx);
state_box.replace(state);
cx.window_mut()
.next_frame
.element_states
.insert(global_id, ElementStateBox {
inner: state_box,
#[cfg(debug_assertions)]
type_name
});
result
} else {
let (result, state) = f(None, cx);
cx.window_mut()
.next_frame
.element_states
.insert(global_id,
ElementStateBox {
inner: Box::new(Some(state)),
#[cfg(debug_assertions)]
type_name: std::any::type_name::<S>()
}
);
result
}
})
}
/// Obtain the current content mask.
fn content_mask(&self) -> ContentMask<Pixels> {
self.window()
.next_frame
.content_mask_stack
.last()
.cloned()
.unwrap_or_else(|| ContentMask {
bounds: Bounds {
origin: Point::default(),
size: self.window().viewport_size,
},
})
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
fn rem_size(&self) -> Pixels {
self.window().rem_size
}
}
impl Borrow<Window> for WindowContext<'_> {
fn borrow(&self) -> &Window {
&self.window
}
}
impl BorrowMut<Window> for WindowContext<'_> {
fn borrow_mut(&mut self) -> &mut Window {
&mut self.window
}
}
impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
pub struct ViewContext<'a, V> {
window_cx: WindowContext<'a>,
view: &'a View<V>,
}
impl<V> Borrow<AppContext> for ViewContext<'_, V> {
fn borrow(&self) -> &AppContext {
&*self.window_cx.app
}
}
impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut *self.window_cx.app
}
}
impl<V> Borrow<Window> for ViewContext<'_, V> {
fn borrow(&self) -> &Window {
&*self.window_cx.window
}
}
impl<V> BorrowMut<Window> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut Window {
&mut *self.window_cx.window
}
}
impl<'a, V: 'static> ViewContext<'a, V> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
Self {
window_cx: WindowContext::new(app, window),
view,
}
}
pub fn entity_id(&self) -> EntityId {
self.view.entity_id()
}
pub fn view(&self) -> &View<V> {
self.view
}
pub fn model(&self) -> &Model<V> {
&self.view.model
}
/// Access the underlying window context.
pub fn window_context(&mut self) -> &mut WindowContext<'a> {
&mut self.window_cx
}
pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
where
V: 'static,
{
let view = self.view().clone();
self.window_cx.on_next_frame(move |cx| view.update(cx, f));
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
let view = self.view().downgrade();
self.window_cx.defer(move |cx| {
view.update(cx, f).ok();
});
}
pub fn observe<V2, E>(
&mut self,
entity: &E,
mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: 'static,
V: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.observers.insert(
entity_id,
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
view.update(cx, |this, cx| on_notify(this, handle, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
);
self.app.defer(move |_| activate());
subscription
}
pub fn subscribe<V2, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: EventEmitter<Evt>,
E: Entity<V2>,
Evt: 'static,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let handle = entity.downgrade();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.event_listeners.insert(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&handle) {
let event = event.downcast_ref().expect("invalid event type");
view.update(cx, |this, cx| on_event(this, handle, event, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a callback to be invoked when the view is released.
///
/// The callback receives a handle to the view's window. This handle may be
/// invalid, if the window was closed before the view was released.
pub fn on_release(
&mut self,
on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
self.view.model.entity_id,
Box::new(move |this, cx| {
let this = this.downcast_mut().expect("invalid entity type");
on_release(this, window_handle, cx)
}),
);
activate();
subscription
}
pub fn observe_release<V2, E>(
&mut self,
entity: &E,
mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V: 'static,
V2: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
entity_id,
Box::new(move |entity, cx| {
let entity = entity.downcast_mut().expect("invalid entity type");
let _ = window_handle.update(cx, |_, cx| {
view.update(cx, |this, cx| on_release(this, entity, cx))
});
}),
);
activate();
subscription
}
pub fn notify(&mut self) {
if !self.window.drawing {
self.window_cx.notify();
self.window_cx.app.push_effect(Effect::Notify {
emitter: self.view.model.entity_id,
});
}
}
pub fn observe_window_bounds(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.bounds_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
pub fn observe_window_activation(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.activation_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle receives focus.
/// Unlike [on_focus_changed], returns a subscription and persists until the subscription
/// is dropped.
pub fn on_focus(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) = self.window.focus_listeners.insert(
(),
Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() != Some(&focus_id)
&& event.current_focus_path.last() == Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants receives focus.
/// Unlike [on_focus_changed], returns a subscription and persists until the subscription
/// is dropped.
pub fn on_focus_in(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) = self.window.focus_listeners.insert(
(),
Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if !event.previous_focus_path.contains(&focus_id)
&& event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when the given focus handle loses focus.
/// Unlike [on_focus_changed], returns a subscription and persists until the subscription
/// is dropped.
pub fn on_blur(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) = self.window.focus_listeners.insert(
(),
Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() == Some(&focus_id)
&& event.current_focus_path.last() != Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when the window loses focus.
/// Unlike [on_focus_changed], returns a subscription and persists until the subscription
/// is dropped.
pub fn on_blur_window(
&mut self,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.blur_listeners.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants loses focus.
/// Unlike [on_focus_changed], returns a subscription and persists until the subscription
/// is dropped.
pub fn on_focus_out(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) = self.window.focus_listeners.insert(
(),
Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.contains(&focus_id)
&& !event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}),
);
self.app.defer(move |_| activate());
subscription
}
pub fn spawn<Fut, R>(
&mut self,
f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
let view = self.view().downgrade();
self.window_cx.spawn(|cx| f(view, cx))
}
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: 'static,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
pub fn observe_global<G: 'static>(
&mut self,
mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let view = self.view().downgrade();
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
.unwrap_or(false)
}),
);
self.app.defer(move |_| activate());
subscription
}
pub fn on_mouse_event<Event: 'static>(
&mut self,
handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().clone();
self.window_cx.on_mouse_event(move |event, phase, cx| {
handle.update(cx, |view, cx| {
handler(view, event, phase, cx);
})
});
}
pub fn on_key_event<Event: 'static>(
&mut self,
handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().clone();
self.window_cx.on_key_event(move |event, phase, cx| {
handle.update(cx, |view, cx| {
handler(view, event, phase, cx);
})
});
}
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().clone();
self.window_cx
.on_action(action_type, move |action, phase, cx| {
handle.update(cx, |view, cx| {
listener(view, action, phase, cx);
})
});
}
pub fn emit<Evt>(&mut self, event: Evt)
where
Evt: 'static,
V: EventEmitter<Evt>,
{
let emitter = self.view.model.entity_id;
self.app.push_effect(Effect::Emit {
emitter,
event_type: TypeId::of::<Evt>(),
event: Box::new(event),
});
}
pub fn focus_self(&mut self)
where
V: FocusableView,
{
self.defer(|view, cx| view.focus_handle(cx).focus(cx))
}
pub fn listener<E>(
&self,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = self.view().downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
}
impl<V> Context for ViewContext<'_, V> {
type Result<U> = U;
fn new_model<T: 'static>(
&mut self,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Model<T> {
self.window_cx.new_model(build_model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
self.window_cx.update_model(model, update)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
self.window_cx.update_window(window, update)
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.window_cx.read_model(handle, read)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
self.window_cx.read_window(window, read)
}
}
impl<V: 'static> VisualContext for ViewContext<'_, V> {
fn new_view<W: Render + 'static>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>> {
self.window_cx.new_view(build_view_state)
}
fn update_view<V2: 'static, R>(
&mut self,
view: &View<V2>,
update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
) -> Self::Result<R> {
self.window_cx.update_view(view, update)
}
fn replace_root_view<W>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>>
where
W: 'static + Render,
{
self.window_cx.replace_root_view(build_view)
}
fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.focus_view(view)
}
fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.dismiss_view(view)
}
}
impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
type Target = WindowContext<'a>;
fn deref(&self) -> &Self::Target {
&self.window_cx
}
}
impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.window_cx
}
}
// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
slotmap::new_key_type! { pub struct WindowId; }
impl WindowId {
pub fn as_u64(&self) -> u64 {
self.0.as_ffi()
}
}
#[derive(Deref, DerefMut)]
pub struct WindowHandle<V> {
#[deref]
#[deref_mut]
pub(crate) any_handle: AnyWindowHandle,
state_type: PhantomData<V>,
}
impl<V: 'static + Render> WindowHandle<V> {
pub fn new(id: WindowId) -> Self {
WindowHandle {
any_handle: AnyWindowHandle {
id,
state_type: TypeId::of::<V>(),
},
state_type: PhantomData,
}
}
pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
where
C: Context,
{
Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))
}))
}
pub fn update<C, R>(
&self,
cx: &mut C,
update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self.any_handle, |root_view, cx| {
let view = root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(cx.update_view(&view, update))
})?
}
pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
let x = cx
.windows
.get(self.id)
.and_then(|window| {
window
.as_ref()
.and_then(|window| window.root_view.clone())
.map(|root_view| root_view.downcast::<V>())
})
.ok_or_else(|| anyhow!("window not found"))?
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(x.read(cx))
}
pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
where
C: Context,
{
cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
}
pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
where
C: Context,
{
cx.read_window(self, |root_view, _cx| root_view.clone())
}
pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
cx.windows
.get(self.id)
.and_then(|window| window.as_ref().map(|window| window.active))
}
}
impl<V> Copy for WindowHandle<V> {}
impl<V> Clone for WindowHandle<V> {
fn clone(&self) -> Self {
WindowHandle {
any_handle: self.any_handle,
state_type: PhantomData,
}
}
}
impl<V> PartialEq for WindowHandle<V> {
fn eq(&self, other: &Self) -> bool {
self.any_handle == other.any_handle
}
}
impl<V> Eq for WindowHandle<V> {}
impl<V> Hash for WindowHandle<V> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.any_handle.hash(state);
}
}
impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
fn into(self) -> AnyWindowHandle {
self.any_handle
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct AnyWindowHandle {
pub(crate) id: WindowId,
state_type: TypeId,
}
impl AnyWindowHandle {
pub fn window_id(&self) -> WindowId {
self.id
}
pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
if TypeId::of::<T>() == self.state_type {
Some(WindowHandle {
any_handle: *self,
state_type: PhantomData,
})
} else {
None
}
}
pub fn update<C, R>(
self,
cx: &mut C,
update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self, update)
}
pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
where
C: Context,
T: 'static,
{
let view = self
.downcast::<T>()
.context("the type of the window's root view has changed")?;
cx.read_window(&view, read)
}
}
// #[cfg(any(test, feature = "test-support"))]
// impl From<SmallVec<[u32; 16]>> for StackingOrder {
// fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
// StackingOrder(small_vec)
// }
// }
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ElementId {
View(EntityId),
Integer(usize),
Name(SharedString),
FocusHandle(FocusId),
NamedInteger(SharedString, usize),
}
impl ElementId {
pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
ElementId::View(entity_id)
}
}
impl TryInto<SharedString> for ElementId {
type Error = anyhow::Error;
fn try_into(self) -> anyhow::Result<SharedString> {
if let ElementId::Name(name) = self {
Ok(name)
} else {
Err(anyhow!("element id is not string"))
}
}
}
impl From<usize> for ElementId {
fn from(id: usize) -> Self {
ElementId::Integer(id)
}
}
impl From<i32> for ElementId {
fn from(id: i32) -> Self {
Self::Integer(id as usize)
}
}
impl From<SharedString> for ElementId {
fn from(name: SharedString) -> Self {
ElementId::Name(name)
}
}
impl From<&'static str> for ElementId {
fn from(name: &'static str) -> Self {
ElementId::Name(name.into())
}
}
impl<'a> From<&'a FocusHandle> for ElementId {
fn from(handle: &'a FocusHandle) -> Self {
ElementId::FocusHandle(handle.id)
}
}
impl From<(&'static str, EntityId)> for ElementId {
fn from((name, id): (&'static str, EntityId)) -> Self {
ElementId::NamedInteger(name.into(), id.as_u64() as usize)
}
}
impl From<(&'static str, usize)> for ElementId {
fn from((name, id): (&'static str, usize)) -> Self {
ElementId::NamedInteger(name.into(), id)
}
}
impl From<(&'static str, u64)> for ElementId {
fn from((name, id): (&'static str, u64)) -> Self {
ElementId::NamedInteger(name.into(), id as usize)
}
}
/// A rectangle, to be rendered on the screen by GPUI at the given position and size.
#[derive(Clone)]
pub struct PaintQuad {
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
background: Hsla,
border_widths: Edges<Pixels>,
border_color: Hsla,
}
impl PaintQuad {
/// Set the corner radii of the quad.
pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
PaintQuad {
corner_radii: corner_radii.into(),
..self
}
}
/// Set the border widths of the quad.
pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
PaintQuad {
border_widths: border_widths.into(),
..self
}
}
/// Set the border color of the quad.
pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
PaintQuad {
border_color: border_color.into(),
..self
}
}
/// Set the background color of the quad.
pub fn background(self, background: impl Into<Hsla>) -> Self {
PaintQuad {
background: background.into(),
..self
}
}
}
/// Create a quad with the given parameters.
pub fn quad(
bounds: Bounds<Pixels>,
corner_radii: impl Into<Corners<Pixels>>,
background: impl Into<Hsla>,
border_widths: impl Into<Edges<Pixels>>,
border_color: impl Into<Hsla>,
) -> PaintQuad {
PaintQuad {
bounds,
corner_radii: corner_radii.into(),
background: background.into(),
border_widths: border_widths.into(),
border_color: border_color.into(),
}
}
/// Create a filled quad with the given bounds and background color.
pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: background.into(),
border_widths: (0.).into(),
border_color: transparent_black(),
}
}
/// Create a rectangle outline with the given bounds, border color, and a 1px border width
pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: transparent_black(),
border_widths: (1.).into(),
border_color: border_color.into(),
}
}